

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

2

Arduino

A STARTING UP GUIDE FOR COMPLETE BEGINNERS
by Peter Dalmaris, PhD

This book is designed as a guide for people new to the Arduino platform.

It will help you understand the Arduino as a technology and platform, set it up on your computer, do your first
experiments with hardware, and understand the role of the Arduino in the evolution of the Internet of Things.

This guide was written by Peter Dalmaris.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

3

TABLE OF CONTENTS

Table of contents .. 3

Copyright ... 5

About the Author ... 5

Book (free) companion ... Error! Bookmark not defined.

Some of our Arduino courses you might be interested in .. 6
Arduino Step by Step: Getting started ... 6
Arduino Step by Step Getting Serious ... Error! Bookmark not defined.
Basic Electronics for Arduino Makers ... 6
Arduino: Make an IoT environment monitor Error! Bookmark not defined.
Make an Arduino Robot .. Error! Bookmark not defined.

What is the Arduino? ... 8

Places to find help ... 9
Arduino.cc ... 9
Reddit.com ... 10
Instructables ... 11
Dangerous prototypes .. 12
Tech explorations ... 13
Notable vendor web sites ... 14

Arduino boards .. 15

Parts of an Arduino board .. 18

Components .. 19
Shields .. 19
Breakouts .. 20
Components .. 22
Discrete components .. 23

What’s it like programming for the Arduino? ... 26

Quick setup guide ... 28
Installing on a Mac ... 29
Installing on Windows ... 32

Arduino libraries .. 37
Installing a new library .. 38

The basics of Arduino programming .. 43
What is the “Arduino Language”? ... 43
The structure of an Arduino sketch .. 44
Custom functions .. 44

Comments ... 47

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

4

Scope .. 47
Variables .. 47
Constants .. 49
Operators .. 49
Loops and Conditionals .. 50

conditional: “if..else” ... 51
loop: “while” ... 51
loop: “do_while” .. 51
loop: “for” ... 51
Conditional: “switch” ... 52

Classes and objects ... 53
Input and outputs ... 55

Digital pins ... 55
Analog pins ... 59

What’s next? .. 64

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

5

COPYRIGHT
The content of this eBook is Intellectual Property of Tech Explorations.

ABOUT THE AUTHOR
Peter Dalmaris is Chief Geek at Futureshock Enterprises Pty Ltd, expressing his interests in technology through
Tech Explorations. Tech Explorations creates video courses and books on technologies such as the Arduino,
and the Raspberry Pi. Peter also publishes a blog, and Stemiverse Podcast, in which explores and discusses
topics in technology and education.

Peter’s mission is to assist people of all ages in their technology exploration adventures.

His background is in Electrical and Electronics Engineering, and he has spent a lot of time as a software systems
engineer. He has been working actively with the Arduino since 2007.

Peter has also been an educator since 2000, teaching at various Universities in Sydney, Australia.

Peter’s technology interests include (but are not limited!) to microcontrollers, embedded systems, CAD, 3D
printing, open-source software and programming languages, Internet of Things, web technologies, home
automation, robots, remote sensing and much more.

You can contact Peter via Twitter (@futureshocked), his web site (techexplorations.com), and Facebook
(facebook.com/txplore).

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

6

SOME OF OUR ARDUINO COURSES YOU MIGHT BE INTERESTED IN
We are seriously crazy about the Arduino, so we have created a lot of educational content. Here’s a couple of
courses selection to get your appetite going:

ARDUINO STEP BY STEP: GETTING STARTED
This course is for the new Arduino Maker. It is the perfect
“next step” for learners who have completed this free
introductory book and course.

In making this course, I emphasized the importance of
getting the basics right and learning to mastery. As an
educator for over 15 years, I know first-hand that hitting a
roadblock because you lack the fundamental knowledge to
progress can be demotivating.

In ASbS: Getting Started, we make sure that in the more than 15 hours of video content, mini projects and
quizzes, we cover all the basics so that you can enjoy learning about the Arduino.

By the end of the course, you will have a good understanding of the capabilities of the Arduino Uno, the best
Arduino for people getting started, and you will be familiar with the capabilities of several of its cousins.

You can find more details at here.

BASIC ELECTRONICS FOR ARDUINO MAKERS
All your Arduino work will be much easier and enjoyable if you
have a good understanding of basic electronics. This is why we
created this course: Basic Electronics for Arduino Makers.

I have designed this course for anyone with a basic
understanding of electronics, who has already spent time
tinkering with Arduinos.

By the end of this course, you will have learned how to use
commonly used components found in Arduino projects. You will also have learned how to do the relevant
measurements and calculations to help you select appropriate components for your projects.

To complete this course, you will need a few cheap and common components and tools: resistors, capacitors,
transistors, LED, diodes, and batteries. You will also need a multi-meter, a small breadboard and jumper wires.
All of these are probably things that you already have.

You can find more details here.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

7

WITH ALL THIS, LET’S BEGIN LEARNING…

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

8

WHAT IS THE ARDUINO?
Let’s start from the very beginning. What is the Arduino, and where did it come from?

The Arduino is not a single thing, but a prototyping platform. The platform is a collection of hardware, software,
workflows and support networks designed to help people create prototypes (and often, finished products) very
quickly. All of these components are open source, meaning that their designs and source code is available for
anyone to copy and use.

At the center of the Arduino platform is a microcontroller chip. A microcontroller is like the processor in your
computer, except that it is very cheap, much “weaker” in terms of performance, and it is has many connectors
for peripherals like sensors and switches. As a result, microcontrollers are great for sensing and controlling
applications, and you find them everywhere: in your toaster, fridge, alarm system, in your car, printer and paper
shredder.

An early Arduino. It uses the RS232 serial interface instead of USB, an ATMEGA8, and male pin headers instead of female.

The Arduino was created by educators and students at the Interaction Design Institute Ivrea in Ivrea, Italy.
Massimo Banzi, one of the founders, was one of the instructors at Ivrea. At the time, students were using
expensive hardware to build their micro-controller based creations. The Ivrea students and their instructors
decided to build their own microcontroller platform by using a popular “AVR” microcontroller from Atmega,
and a light version of the Wiring development platform written by (then student) Hernando Barragan.

Wiring is what we now call the “Arduino Language” and the Integrated Development Environment (IDE), the
core components that is a bit like what the HTML and the first graphical web browser were for the Web: It made
the Arduino platform easy to use so that people who are not engineers can build sophisticated microcontroller-
based gadgets.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

9

PLACES TO FIND HELP
As you go about exploring the Arduino, you will hit roadblocks. These are great opportunities for learning! The
Arduino is very well documented, with a lot of places where you can find documentation and personalised help
from other Arduino enthusiasts. Here are a few places worth visiting:

ARDUINO.CC
This is the premier resource for anything Arduino. This is the home of the original documentation for the IDE,
bundled libraries (more about this is coming up), and the hardware. To access this documentation, go to
https://www.arduino.cc/en/Guide/HomePage.

The home of the Arduino.cc documentation resources.

There are also numerous discussion forums from where you can find or offer help. There are forums on general
electronics, LEDs, microcontrollers, audio, sensors, robotics and many more. If you are an artist, you will find
peers discussing relevant issues in the Interactive Art forum. If you are a teacher, you will find the Education
and Teaching forum relevant. There are also forums geared for people based on their location and language,
device, products, and more.

The forums home page is at http://forum.arduino.cc/.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

10

REDDIT.COM
Reddit is an online community with people talking about virtually everything and anything. Each topic is called
a “subreddit”, and Arduino has its own.

The Arduino subreddit

The Arduino subreddit is at https://www.reddit.com/r/arduino/. Here, people talk about their projects, ask
questions, and participate in conversations.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

11

INSTRUCTABLES
Instructables is a web site where people post project guides so that other people can go ahead and build their
own versions of these projects.

Instructables

Instructables is a great resource because it contains details of things people have created in a way that other
people can follow. If you want to learn how to build an Arduino-based cloud-powered home notification system,
an Arduino stopwatch, or Arduino-powered musical chairs, then go to instructables.com

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

12

DANGEROUS PROTOTYPES
Dangerous Prototypes is a blog featuring relatively advanced projects. New projects are added every month,
and they are mostly geared towards more advanced makers. These projects tend to push the limits of what you
can do with microcontrollers, so they are worth looking at even if you are not yet at the skill level required to
actually build them.

Dangerous Prototypes

If you want to know how to re-purpose your old Nokia 3100 as an Arduino shield so that you can send out SMS
messages, this is the place to look at.

You can access the Dangerous Prototypes site at http://dangerousprototypes.com/.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

13

TECH EXPLORATIONS
As a student of our courses, we provide support in two ways: Direct, one-on-one
assistance via our Help Desk, and community support via our course forums.

Our Help Desk is where you can ask for help for any technical website issues, billing
issues, or problems that came up using your study. We typically respond within 24
hours during work days.

Each course has a dedicated forum. This is the place where all students and instructors
discuss course-related issues, exchange ideas, and help each other. Are you having

trouble understanding something in a lecture? Is your Arduino behaving badly? Are you having trouble with a
sketch? The Forum is where you want to ask your question and tap on our Community’s collective expertise.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

14

NOTABLE VENDOR WEB SITES
The major electronics hardware vendors often also provide excellent documentation and guides for the
products they sell.

In particular:

● Element14 has their Arduino guides and forums at
http://www.element14.com/community/groups/arduino

● Adafruit at https://learn.adafruit.com/category/learn-arduino,
● Sparkfun at https://learn.sparkfun.com
● SeeedStudio, at http://wiki.seeedstudio.com/

These resources are free to use regardless of whether you have purchased one of their products.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

15

ARDUINO BOARDS
Coming across an Arduino board for the first time can be intimidating. Only a few years ago, there were just
two or three boards to choose from. Today, there are dozens of boards designed by Arduino and various
manufacturers. Some, but not all of these manufacturers, work closely with Arduino to ensure that the boards
they produce are fully compatible with the official Arduino boards. The boards produced by these
manufacturers are stamped as “official” and are listed on the Arduino.cc web site products page.

If a board is not listed on the Arduino products page, then it probably a clone. In my experience, clones will work
like the original, but usually they are made with cheaper components that will wear off after a while, especially
the connectors in the headers. It is worth investing in official Arduino boards even if they are slightly more
expensive because they will work better so that you will not have to spend hours figuring out problems with the
board instead of building your gadget.

At the time I am writing this, there are around 20 official Arduino boards.

If you are a beginner in Arduino and electronics, I recommend getting the Arduino Uno R3. This is the classic
Arduino board. It is hard to destroy (I have tried!), has tons of high quality documentation, example sketches
and libraries while still surprisingly capable. It is relatively easy to expand as your projects grow.

The official Arduino Uno. The best board for the beginner and beyond.

If you are looking to build a project that requires a small size, you can go for one of the small footprint Arduinos,
like the Pro Mini or the Micro.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

16

The tiny Arduino Pro Mini

There are also Arduinos based on more capable microcontrollers, like the Mega, or even microprocessors
running Linux, like the Arduino Yún, which also has built-in Wifi capability and is well suited to Internet of Things
applications.

The Arduino Yún, geared for Internet of Things applications

Worth mentioning are also the various wearable Arduinos. If you are interested in making electronics that you
can embed in clothing, then you can look at something like the super-tiny Arduinos Gemma or Lillypad. These
are small, battery-ready, low power Arduinos, circular in shape so that they don’t catch on fabrics.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

17

The super-tiny Arduino Gemma

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

18

PARTS OF AN ARDUINO BOARD
Arduino boards have certain features that are shared between them and are good knowing about. I’m
describing the most important ones in this image:

The most important parts of the Arduino Uno

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

19

COMPONENTS
The Arduino can’t do much on its own. Its purpose is to control components that you connect to it. And there
are a lot of them! In this section I will discuss the kind of components that you can connect to an Arduino, and
give some examples for each.

SHIELDS
An Arduino shield is a printed circuit board with various components already installed on it, ready to perform a
particular function. They hook onto an Arduino without any wiring or soldering. Just align the shield with the
Arduino, and apply a bit of pressure to secure them.

Most shields are built to work with the Arduino Uno, and as a result virtually all other full-sized Arduinos have
an Uno-compatible header configuration.

The Arduino Ethernet shield (top) about to connect to an Arduino Uno (bottom). To make the connection, simply align the pins of the
shield with the headers in the Uno and gently press down.

There are shields for almost anything: Ethernet and Wifi networking, Bluetooth, GSM cellular networking,
motor control, RFID, audio, SD Card memory, GPS, datalogging, sensors, color LCD screens, and more.

There are also shields for prototyping with which you can make permanent any circuits you have created on a
breadboard and are too good to destroy.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

20

A prototyping shield like this one from Adafruit makes it easy to preserve your best circuit designs.

Shields are great for beginners because they require no tools to add components to an Arduino.

BREAKOUTS
Breakouts are typically small circuit boards built around an integrated circuit that provides a specific
functionality. The board contains supporting circuitry, like a subsystem for providing power, LEDs for indicating
status, resistors and capacitors for regulating signals, and pads or pins for connecting the breakout to other
components or to an Arduino.

In many cases, the same functionality is offered in a shield or a breakout format. For example, you can get the
exact same GPS system as a breakout or as a shield. In such cases, the difference is size. The breakout is smaller,
and it can work with boards other than the Arduino Uno or Arduinos with the Uno headers.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

21

The Adafruit GPS breakout. It comes with a header and a battery holder that you must solder on (image courtesy of Adafruit).

A breakout has to be wired to an Arduino using jumper wires and often a breadboard.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

22

You must connect the breakout to the Arduino using wires and a breadboard (image courtesy of Adafruit)

Sometimes, apart from using jumper wires to connect the breakout to the Arduino, you may also need to do a
bit of soldering, like I had to do for the GPS breakout. Here’s the quick version of how this soldering job went
(video on Youtube, txplo.re/asupe1574).

The really nice thing about breakouts is that unlike shields, which only work with the Arduino, a breakout can
be connected to anything, including the boards that you will design yourself down the track. Therefore, apart
from being good for learning, breakouts can be embedded into a final product.

COMPONENTS
While breakouts give you easy access to components by putting them on a board with their supporting
electronics, you will eventually need access to the individual component so that you can fully customize the
way it works in your circuit.

For example, if you would like to have a keypad so that the user can type letters and numbers as input to a
gadget you are making, you could use a soft membrane keypad. This keypad is available as a component. To
use it properly, you will need to add several wires and resistors.

Using a 4x4 keypad requires external wires, diodes and resistors. This is more work (compared to a shield) but often the flexibility you get
in return is worth the effort.

Another example of an individual component is a character LCD screen. To make this one work properly, you
have to provide a lot of wires and a potentiometer.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

23

An LCD screen on a breadboard. A lot of wires are used to connect it to an Arduino Uno, on a breadboard with a potentiometer.

A shift register IC makes it possible to control many digital components with a single pin of your Arduino

As you become more skilled in Arduino prototyping, you will find yourself using increasingly more components
like these. Almost any functionality you can imagine is available as a component. Sensors of all kinds, motion,
user input, light, power, communications, storage, multiplexing and port multipliers, binary logic integrated
circuits, amplifier circuits, even thumb print scanners can be connected to an Arduino as components.

DISCRETE COMPONENTS
At the bottom of the scale in terms of size and complexity we have a wide range of discreet components. Things
like resistors, capacitors, transistors, LEDs, relays, coils etc. fall under this category. They are the “brick and
mortar” of electronics. Most of these discrete components are very simple, but very important.

For example, a resistor limits the amount of current that can flow through a wire. A capacitor can be used as a
small store of energy or as a filter. A diode limits the flow of current to a single direction. An LED is a diode that
emits light. A transistor can be used as a switch or an amplifier. A relay can be used to switch on and off large
loads, like an electrical motor. A coil can also be used as a filter or as part of a sensor, among other things. There
are many more discrete components than the examples mentioned.

A resistor limits the amount of current that flows through a wire

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

24

A capacitor stores energy, or works as a filter

A diode limits current to flow towards one direction only

An LED is a diode that emits light

A transistor can be used as a switch or an amplifier

A relay is used to drive large loads from your Arduino

A coil can be used as a filter.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

25

As you start your electronics adventures, no matter which Arduino you choose, you will need to stock up on
these components as you will need to use them in virtually everything you make. Luckily, they are very cheap,
and it is worth buying them in bulk so that you always have some when you need them.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

26

WHAT’S IT LIKE PROGRAMMING FOR THE ARDUINO?
To write programs for your Arduino, you use a simple tool called the “Arduino IDE”.

Advanced makers have the habit of replacing the one provided by Arduino with one of their choice in order to
take advantage of various advanced features, but you don’t have to worry about this until much later.

No matter what your platform is, Windows, Mac or Linux, the Arduino IDE looks like this:

The official Arduino IDE

Programming text editors don’t come much simpler than this. You type the program into the white box, and as
you type, the IDE will recognise keywords based on their type and highlight them with a special colour for each
type. When you are ready to upload, connect your Arduino to your computer with a cable:

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

27

Connect your Arduino to your computer with a USB cable

In most cases, the IDE will detect the connected Arduino and will configure itself with the correct USB port. If
not, you can use the Tools menu to set the Arduino board model and the USB port is connected to it. Here is a
quick video on how to do this (Youtube, txplo.re/ardui32cc).

A few seconds later, the upload will finish and your sketch will start running on your Arduino. In this example, I
uploaded a sketch that simply makes one of the LEDs on the Arduino board itself to blink. And here is what that
looks like (Youtube, txplo.re/ardui383b).

And this is what the process of connecting and uploading a sketch to your Arduino looks like.

The Arduino engineering team has done an amazing job at making a once complicated process almost as easy
as sending an email!

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

28

QUICK SETUP GUIDE
Now that you know what to expect, let’s go ahead and setup your IDE. The process involves downloading the
software from arduino.cc, and installing it on your computer. The only requirement is that you already have a
Java runtime environment already installed. This is usually not a problem on Windows and Mac computers.

To download the IDE for your operating system, go to https://www.arduino.cc/en/Main/Software

The Arduino IDE download page. Pick the installer to match your computer operating system.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

29

Look for the installation file in your download folder, “~/Downloads” for the Mac and “Downloads” on Windows.

The IDE installer on the Mac

The IDE installer on Windows

INSTALLING ON A MAC
To do the installation on the Mac, double click on the installation archive file to have it extracted. The picture
below may be different to what you will see depending on which program you use for extracting ZIP files.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

30

Extracting the IDE installer on the Mac

When the extraction completes, you will have new file, which is the actual IDE. All you have to do then is to
move it into your Applications folder.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

31

The IDE application is now in my Downloads folder.

… And finish the process by copying the file into your Applications folder.

To start the IDE, just double click on the Arduino icon inside the Applications folder.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

32

INSTALLING ON WINDOWS
On Windows, start by double-clicking on the installation file. Be ready for a long series of confirmation dialogue
boxes. In all of them it is safe to accept the defaults.

A pop-up will ask you for permission to run the program. Click on Yes to continue:

Yes! It is safe to continue!

Agree to the license agreement:

Yes! I agree!

Accept the checked components:

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

33

Yes! All these components are useful.

Accept the default installation location, and the file copy will begin:

Yes! This location looks fine

The installer will start copying files to the installation location:

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

34

Copying files to the destination

You will be asked to install device drivers a couple of times. Just click on “Install”:

Yes, these USB device drivers are also useful

The copy process will finish. Click “Close” to close the installer:

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

35

Ok, the installer is finished. Let’s close it.

You can start the Arduino IDE just like any other Windows program. You can search for it or use the program
list:

To start the Arduino IDE, you can search for it

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

36

… or you can list all apps and look under “A”

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

37

ARDUINO LIBRARIES
A lot of software has already been written for the Arduino in a way that makes it easy for people to reuse in
their own sketches. Often, this software is organised in a library and then distributed via the web, through
sources like the arduino.cc site and Github, an online software source code repository.

Many useful libraries are included in the Arduino IDE by default. Have a look. Start the IDE, and then

click on the File → Examples menu item (same for Windows and Mac). You will see a list of items, like

in this screenshot:

A list of libraries that ship with the IDE

This is not a complete list of libraries, only those that have example sketches. The IDE contains many more
libraries that are hidden in its installation directory.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

38

Do a quick browse through them. You will find libraries that make it easy to connect your Arduino to an Ethernet
network, to various peripherals through serial protocols like SPI, servo motors, Wifi networks, and to color
graphics screens.

INSTALLING A NEW LIBRARY
If there is a library that you need but is not included with the IDE, you can install it. Let’s look at an example.

Let’s say that you want to have a small web server running on your Arduino. You can setup this server so that
you can use your browser to control lights and read sensor values connected to it. The Arduino can handle this,
no problem. You could spend a few days (or weeks) and write your own bare-bones web server (assuming you
have a good understanding of HTTP), or just use Webduino.

Webduino is a library that was written at NYC Resistor to make it very easy to turn an Arduino into a basic web
server.

The library is available on Github at https://github.com/sirleech/Webduino.

The home page for Webduino on Github

Download the Zip file on your computer. It doesn’t matter what platform you are on, libraries work the same
regardless of whether you are on Windows, Mac or Linux.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

39

Also, don’t worry about extracting the files from the ZIP archive. The newer versions of the Arduino IDE have
an easy library installer that take care of extracting the library from the ZIP file and copying the files to the right
location.

Assuming the library ZIP file is in your Downloads folder, start the Arduino IDE. Then click on “Sketch

→ Include Library → Add .ZIP Library…”, like this:

Including a new library

A new dialogue box will pop up. Browse to the location of the ZIP file, select it, and click on “Choose” to
complete the process:

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

40

The Library addition dialogue box

When you click on “Choose”, the dialogue box will disappear, but nothing else is going to happen. No
confirmation, no sound… To make sure that the Webduino library was actually installed, you can look for the
example sketches that most libraries include.

Go to File → Examples, and look at the bottom of the list for your new library:

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

41

There’s the new library, right at the bottom of the list!

You can also find a list with names and descriptions of all the libraries currently installed in your IDE.

Go to Sketch → Include Library → Manage Libraries, and this window will pop-up:

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

42

The library manager can tell you what’s installed, and install new libraries.

The Library Manager, apart from telling you what is already installed, can also install new libraries from online
sources with the click of a button.

You can add a new library from the Library Manager

Hopefully you now have a good overview of the IDE and its most important functions. Let’s have a look at the
Arduino programming language next.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

43

THE BASICS OF ARDUINO PROGRAMMING
A great deal of time working with the Arduino is not designing and assembling circuits, but programming the
Arduino to control these circuits. Programming the Arduino requires a basic level of programming competence.
Getting to this level can be intimidating, at first. But like all good things in life, you can achieve it if you put your
mind to it.

The guide in this section will help you to get started.

If you feel that you need more help, consider enrolling to Arduino Step by Step Getting Started, where you will
get access to a lot more training material and to our instructors. If you need one-on-one help, consider our
Arduino Bootcamp, in which I help you to complete the Bootcamp curriculum via live video conferencing and
daily exercises.

WHAT IS THE “ARDUINO LANGUAGE”?
The Arduino language is actually C++. Most of the time, people will use a small subset of C++, which looks a lot
like C. If you are familiar with Java, then you will find C++ easy to recognise and work with. If you have never
programmed before, do not worry and do not be afraid. In the next few paragraphs you will learn everything
you need to get started.

The most important “high level” characteristic of C++ is that it is object oriented. In such a language, an object
is a construct that combines functional code (the code that does things like calculations and memory
operations), with state (the results of such calculations, or simply values, stored in variables).

Object orientation made programming much more productive in most types of applications when compared
with earlier paradigms because it allowed programmers to use abstractions to create complicated programs.

For example, you could model an Ethernet adaptor as an object that contains attributes (like its IP and MAC
addresses) and functionality (like asking a DHCP server for network configuration details). Programming with
objects became the most common paradigm in programming, and most modern languages, like Java, Ruby
and Python, have been influenced heavily by C++.

Much of the sketch code you will be writing and reading will be referencing libraries containing definitions for
objects (these definitions are called “classes”). Your original code, to a large extent, will consist of “glue” code
and customisations. In this way, you can be productive almost right away, by learning a small subset of C++.

The code that makes up your sketch must be compiled into the machine code that the microcontroller on the
Arduino can understand. A special program, the compiler, does this compilation. The Arduino IDE ships with an
open-source C++, so you don’t have to worry about the details. But just imagine: every time you click the
“Upload” button, the IDE starts up the compiler, which converts your human-readable code into ones and zeros,
and then sends it to the microcontroller via the USB cable.

As every useful programming language, C++ is made up of various keywords and constructs. There are
conditionals, functions, operators, variables, constructors, data structures, and many other things.

Let’s take the most important of those things and examine them one at a time.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

44

THE STRUCTURE OF AN ARDUINO SKETCH
The simplest possible Arduino sketch is this:

(Gist for web page: https://gist.github.com/futureshocked/f124835c8d115d5825c2.js)

void setup() {
 // put your setup code here, to run once:

}

void loop() {
 // put your main code here, to run repeatedly:

}

This code contains two functions in it.

The first one is “setup()”. The Arduino will execute anything you put in this function just once when the program
starts.

The second one is “loop()”. Once the Arduino finishes with the code in the setup() function, it will move into
loop(), and it will continue running it in a loop, again and again, until you reset it or cut of the power.

Notice that both setup() and loop() have open and close parenthesis. Functions can receive parameters, which
is a way by which the program can pass data between its different functions. The setup and loop functions don’t
have any parameters passed to them. If you add anything within the parenthesis, you will cause the compiler
to print out a compilation error and stop the compilation process.

Every single sketch you write will have these two functions in it, even if you don’t use them. In fact, if you remove
one of them, the compiler again will produce an error message. They are two of the few expectations of the
Arduino language.

These two functions are required, but you can also make your own. Let’s look at this next.

CUSTOM FUNCTIONS
A function is simply a group of instructions with a name. The Arduino IDE expects that the setup() and loop()
functions will be in your sketch, but you can make your own. Group instructions inside functions is a good way
of organising your sketches, especially as they tend to get bigger in size and complexity as you become a more
confident programmer.

To create a function you need a definition and the code that goes inside the curly brackets.

The definition is made up of at least:

● a return type
● a name
● a list of parameters

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

45

Here’s an example (gist at https://gist.github.com/futureshocked/980b11f34634cefb3359.js):

int do_a_calc(int a, int b){
 int c = a + b;
 return c;
}

The return type here is “int” in the first line. It tells the compiler that when this function finishes its work, it will
return an integer value to the caller (the function that called it).

The name (also known as the “identifier”) of the function is “do_a_calc”. You can name your functions anything
you like as long as you don’t use a reserved word (that is, a word that the Arduino language already uses), and
it has no spaces or other special characters like “%”, “$” and “#”. You can’t use a number as the first character.
If in doubt, remember to only use letters, numbers, and the underscore in your function names.

The parameters passed to the function are named “a” and “b”, and are both integers (“int”). The values that
these variables contain can be accessed inside the body of the function. Parameters are optional, but if you
don’t need to include any you will still need to use the open/close parentheses.

In the first line of the body, we create a new variable, “c”, of type integer (“int”). We add a and b, and then
assign the result to c.

And finally, in the second line of the body of the function, we return the value stored in “c” to the caller of
do_a_calc.

Let’s say that you would like to call do_a_calc from your setup function. Here’s a complete example showing
you how to do that:

void setup() {
 // put your setup code here, to run once:
 int a = do_a_calc(1,2);
}

void loop() {
 // put your main code here, to run repeatedly:

}

int do_a_calc(int a, int b){
 int c = a + b;
 return c;
}

In the setup() function, the second line defines a new variable “a”. In the same line, it calls the function
do_a_calc, and passes integers 1 and 2 to it. The do_a_calc function calculates the sum of the two numbers and
returns the value “3” to the caller, which is the second line of the setup() function. Then, the value “3” is stored
in variable a, and the setup() function ends.

There are a couple of things to notice and remember.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

46

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

47

COMMENTS
Any line that starts with “//” or multiple lines that start with “/*” and finish with “*/” contain comments.
Comments are ignored by the compiler. They are meant to be read by the programmer. Comments are used to
explain the functionality of code or leave notes to other programmers (or to self).

SCOPE
In the setup() function there is a definition of a variable with identifier “a”. In function do_a_calc there is also a
definition of a variable with the same identifier (it makes no difference that this definition is in the function
definition line).

Having variables with the same name is not a problem as long as they are not in the same scope. A scope is
defined by the curly brackets. Any variable between an open and close curly bracket is said to be within that
scope. If there is a variable with the same name defined within another scope, then there is no conflict.

Be careful when you choose a name for your variables. Problems with scopes can cause headaches: you may
expect that a variable is accessible in a particular part of your sketch, only to realize that it is out of scope.

Also, be careful to use good descriptive names for your variables. If you want to use a variable to hold the
number of a pin, call it something like:

int digital_pin = 1;

...instead of...

int p = 1;

You will thank yourself later.

VARIABLES
Programs are useful when you process the data. Processing data is what programs do all the time. Programs
will either get some data to process from a user (perhaps via a keypad), from a sensor (like a thermistor that
measures temperature), the network (like a remote database), a local file system (like an SD Card), a local
memory (like an EEPROM), and so many other places.

Regardless of the place where your program gets its data from, it must store them in memory in order to work
with it. To do this, we use variables. A variable is a programming construct that associates a memory location
with a name (an identifier). Instead of using the address of the memory location in our program, we use an easy
to remember name.

You have already met a variable. In the earlier section on custom functions, we defined a bunch of variables,
“a”, “b” and “c”, that each holds an integer.

Variables can hold different kinds of data other than integers. The Arduino language (which, remember, is C++)
has built-in support for a few of them (only the most frequently used and useful are listed here):

C++ keyword Size Description

boolean 1 byte Holds only two possible values, “true” or “false”, even though it

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

48

occupies a byte in memory.

char 1 byte Hold a number from -127 to 127. Because it is marked as a “char”, the
compiler will try to match it to a character from the ASCII table of
characters.

byte 1 byte Can hold numbers from 0 to 255.

int 2 bytes Can hold numbers from -32768 to 32767.

unsigned int 2 bytes Can hold numbers from 0-65535

word 2 bytes Same as the “unsigned int”. People often use “word” for simplicity and
clarity.

long 4 bytes Can hold numbers from -2,147,483,648 to 2,147,483,647.

unsigned long 4 bytes Can hold numbers from 0-4,294,967,295.

float 4 bytes Can hold numbers from -3.4028235E38 to 3.4028235E38. Notice that
this number contains a decimal point. Only use float if you have no
other choice. The ATMEGA CPU does not have the hardware to deal
with floats, so the compiler has to add a lot of code to make it possible
for your sketch to use them, making your sketch larger and slower.

string - char array - A way to store multiple characters as an array of chars. C++ also offers
a String object that you can use instead, which offers more flexibility
when working with strings in exchange for higher memory use.

array - A structure that can hold multiple data of the same type.

To create a variable, you need a valid name and a type. Just like with functions, a valid name is one that contains
numbers, letters and an underscore, starts with a letter, and is not reserved. Here is an example:

byte sensor_A_value;

This line defines a variable named “sensor_A_value”, which will hold a single byte in memory. You can store a
value in it like this:

sensor_A_value = 196;

You can print out this value to the serial monitor like this:

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

49

Serial.print(sensor_A_value);

The serial monitor is a feature of the Arduino IDE that allows you to get text from the Arduino displayed on your
screen. More about this later. Here I just want to show you how to retrieve the value stored in a variable. Just
call its name. Also, remember the earlier discussion about scope: the variable has to be within scope when it is
called.

Another nice thing about a variable is that you can change the value stored in it. You can take a new reading
from the sensor and update the variable like this:

sensor_A_value = 201;

No problem, the old value is gone, and the new value is stored.

CONSTANTS
If there is a value that will not be changing in your sketch, you can mark it as a constant.

This has benefits in terms of memory and processing speed, and is a good habit to get used to.

You can declare a constant like this:

const int sensor_pin = 1;

Here, you define the name of the variable “sensor_pin”, mark it as constant, and set it to 1. If you try to change
the value later, you will get a compiler error message and your program will not even get uploaded to the
Arduino.

OPERATORS
Operators are special functions that perform an… operation on one or more pieces of data.

Most people are familiar with the basic arithmetic functions, = (assignment), +, -, * and /, But there are a lot
more.

For example, here are the most commonly used operators:

Operator Function Example

% Modulo operator. It returns the remainder of a
division.

5%2=1

+=, -=, *=, /= Compound operator. It performs an operation on
the current value of a variable.

int a = 5;

a+= 2;

This will result in a containing 7 (the
original 5 plus a 2 from the addition
operation).

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

50

++, -- Increment and decrement by 1. int a = 5;

a++;

This will result in a becoming 6.

==, !=, <, >,
<=, >=

Comparison operators. Will return a boolean (true
or false) depending on the comparison result.

● == → equality

● != → un-equality

● < → less than

● > → greater than

● <= → less or equal than

● >= → greater or equal than

int a = 5;

int b = 6;

boolean c = a == b;

This will result in variable c contains a
false boolean value.

!, &&, || Logical operators. The “!’ operator will invert a
boolean value. The “&&”

! → NOT (invert) of a boolean value

&& → AND of two booleans

|| → OR of two booleans

boolean a = true;

boolean b = true;

boolean c = false;

boolean x = !a; // x → false

boolean y = b && c; // y → false

boolean z = b || c; // z → true

There are more than these. If you want to work at the bit level, for example, and manipulate individual bits
within a byte (useful for things like shift registers), you can use bitwise operators. But this is something you can
pick up and learn later.

LOOPS AND CONDITIONALS
Conditionals are useful when you want to change the flow of executing in your sketch. Loops are useful when
you want to repeat a block of code multiple times.

Very often, these two work together, that’s why I discuss them here in the same section.

Let’s start with a conditional. Imagine you have a red light and a green light. You want to turn the green light
on when you press a button and the red light on when you leave the button not pressed.

To make this work, you can use a conditional.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

51

CONDITIONAL: “IF..ELSE”
The most common of these is the if...else statement. Using pseudo code (that is, a program written in English
that looks a bit like a real program), you would implement this functionality like this:

if (button == pressed)

{

 green_light(on);

 red_light(off);

} else

{

 red_light(on);

 green_light(off)

}

LOOP: “WHILE”
If you need to repeat a block of code based on a boolean condition, you can use the while conditional expression.
For example, let’s say that you want to make a noise with a buzzer for as long as you press a button. Using
pseudo code again, you can do it like this:

while(button_is_pressed)

{

 make_annoying_noise;

}

Easy!

LOOP: “DO_WHILE”
You can do the exact same thing, but do the check of the condition at the end of the block instead of the start.
This variation would look like this:

do

{

 make_annoying_noise;

} while(button_is_pressed)

LOOP: “FOR”
If you know how many times you want to repeat code in a block, you can use the “for” structure. Let’s say you
want to blink a light 5 times.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

52

Here’s how to do it:

for (n = 1 to 5)

{

 Turn light on;

 Turn light off;

}

Your light will turn on and then off 5 times. Inside the curly brackets, you will also have access to the “n” variable,
which contains the number of repeat at any given time. With this, you could insert a conditional so that you
leave the lights on before the last loop ends:

for (n = 1 to 5)

{

 Turn light on;

 if (n < 5) then Turn light off;

}

In this variation, the light will only turn off if the “n” variable is less than 5.

CONDITIONAL: “SWITCH”
Another useful conditional is the Switch. If you have a variable, like button_pressed, which can take a few valid
values, you can do something like this with it:

switch (button_pressed)

{

 case 1:

 Blink light one time;

 break;

 case 2:

 Blink light two times;

 break;

 case 3:

 Blink light three times;

 break;

 default:

 Don’t blink light;

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

53

}

The switch statement will check the value stored in the button_pressed variable. If it is “1”, it will blink the light
once, if it is “2” it will blink the light twice, and if it is “3” it will blink three times. If it is anything else, it won’t
blink the light at all (this is what the “default” case is).

The button_pressed variable can be an integer and could be taking its values from a membrane keypad, like
this one:

A membrane keypad can be used to provide input to your sketch.

For now, don’t worry how this keypad works; this is something you will learn later. Just imagine that when you
hit a key, a number comes out.

Also, notice the keyword “break”. This keyword will cause the execution of the sketch to jump out of the block
of code that is in between the curly brackets. If you remove all the “break” statements from your sketch, and
press 1 on the keypad, then the sketch will cause the light to blink once, then twice, and then three times as the
execution will start in the first case clause, and then more into the rest.

CLASSES AND OBJECTS
You now know that the Arduino language is actually C++ with a lot of additional support from software, the
libraries, which were mentioned earlier, that makes programming easy. It was also mentioned that C++ is an
object-oriented programming language.

Let’s have a closer look at this feature and especially how it looks like in Arduino code.

Object-orientation is a technique for writing programs in a way that makes them easier to manage as they grow
in size and complexity. Essentially, a software object is a model of something that we want the computer (or an
Arduino) to be able to handle programmatically.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

54

Let’s take an example. Imagine that you have a robotic hand. The arm only has one finger and can rotate by 360
degrees. The finger can be open or closed. You can model this hand in an object-oriented way like in this
pseudo-code:

class robotic_hand{

 //These variables hold the state of the hand

 bool finger;

 int rotation;

 //These variables change the state of the hand

 function open_finger();

 function close_finger();

 function rotate(degrees);

 //These variables report the state of the hand

 function bool get_finger_position();

 function int get_rotation_position();

}

Can you understand what this code does? I am creating a model of the hand and naming it “robotic_hand”. The
keyword “class” is a special keyword so that the compiler understands my intention to create a model.

Inside the class, I define three kinds of components for the model (=class). First, a couple of variables to hold
the current state of the hand. If the hand is in an open position, the boolean variable “finger” will be “true”. If
the hand is rotated at 90 degrees, the integer variable “rotation” will contain “90”.

The second set of components is special functions that allow me to change the status of the hand. For example,
if the hand is currently open and I want to close it so that it can pick up an object, I can call the “close_finger()”
function. If I want to rotate it at 45 degrees, I can call “rotate(45)”.

Finally, the third set of components is functions that allow me to learn about the status of the hand. If I want to
know if the hand is opened or closed, I can call “get_finger_position()”, and this function will respond with
“true” or “false”.

The names are up to me to choose so that their role is clear. A class hides within it components such as these
so that the programmer can think more abstractly about the thing s/he is working with instead of the
implementation details.

Let’s say now that you would like to use this class in your own sketch. Here is an example of how you would do
it in Arduino:

#include <Robot_hand.h>

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

55

Robot_hand robot_hand();

void setup(){

}

void loop(){

 robot_hand.open_finger();

 robot_hand.rotate(45);

 robot_hand.close_finger();

}

You would start by importing the Robot_hand library, which contains the class you just created into your
Arduino sketch. You do this with the include statement in the first line of your sketch.

In the second line, you create an object based on the Robot_hand class. Think about this for a few moments: a
class contains the blueprints of an object, but is not an object. It is the equivalent of a blueprint for a house, and
the house itself. The blueprint is not a house, only the instructions for building a house. The builder will use the
blueprint as the instructions to build a house. Similarly, the robot hand class definition is only the instructions
that are needed for building the robot hand object in your sketch. In the second line of this example sketch we
are defining a new object built based on the instructions in the Robot_hand class, and we give it the name
“robot_hand()”. The name of the object cannot be the same as the name of the class, which is why it starts with
a lowercase “r”.

In the loop() function, we can call the object’s functions to make the robot hand move. We can open it using
robot_hand.open_finger() and close it using robot_hand.close_finger().

Notice that these instructions start with the name of the object, “robot_hand”, followed by a dot, then followed
by the name of the function we want to call, “close_finger()”. This is called “dot notation”, and is very common
throughout most object-oriented programming languages.

There’s a lot more to learn on this topic, but in order to get started with Arduino programming, this level of
basic understanding of object orientation can take you a long way.

INPUT AND OUTPUTS
Inputs and outputs are a fundamental feature of the microcontroller. You can connect devices to special pins
on your Arduino, and read or change the state of these pins through special instructions in your sketch.

There are two kinds of input and output pins on an Arduino: digital and an analog.

Let’s have a look at them next.

DIGITAL PINS

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

56

Digital pins are useful for reading the state of devices like buttons and switches, or controlling things like relays
and transistors or LEDs. These examples have one thing in common: they only have two possible states.

A button can be either pressed on not pressed. A switch can be on or off. A relay can be energised or not.

If in your sketch you want to know the state of a button, you can connect it to a digital pin. You can wire it up
so that when the button is pressed, a 5V voltage is read by the connected digital pin, and that is reported as
“high” to your sketch.

A button like this one is a digital device. Connect it to a digital pin.

Let’s suppose that you connected a button to a digital pin on your Arduino, as I show in this schematic:

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

57

A button is connected to digital pin 2. There is also a 10KOhm resistor that conveys a 0V signal to pin 2 when the button is not pressed.

When you press the button, the voltage conveyed by the yellow wire to digital pin 2 is 5V, equivalent to “logical
high”. This happens because when the button is pressed, internally the red wire coming from the 5V source on
the Arduino is connected electrically to the yellow wire that goes to pin 2.

When the button is not pressed, the voltage at pin 2 is 0V, equivalent to “logical low”. This happens because of
the resistor in the schematic. When the button is not pressed, the yellow wire is connected to the GND pin on
the Arduino, which is at 0V, and thus this level if transmitted to pin 2.

You can read the state of the button in your Arduino sketch like this:

int buttonState = 0;

void setup() {

 pinMode(2, INPUT);

}

void loop(){

 buttonState = digitalRead(2);

 if (buttonState == HIGH)

 {

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

58

 //Do something when the button is pressed

 } else

 {

 //Do something else when the button is not pressed

}

}

First, create a variable to hold the state of the button.

Then, in the setup() method, tell the Arduino that you will be using digital pin 2 as an input.

Finally, in the loop(), take a reading from digital pin 2 and store it in the buttonState variable. We can get the
Arduino to perform a particular function when the button is in a particular state by using the “if” conditional
structure.

What about writing a value to a digital pin? Let’s use an LED for an example. See this schematic:

An LED is connected to digital pin 13. A 220Ohm resistor protect the LED from too much current flowing through it.

In this example we have a 5mm red LED connected to digital pin 13. We also have a small resistor to prevent
burning out the LED (it is a “current limiting resistor”). To turn the LED on and off, we can use a sketch like this:

void setup() {

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

59

 pinMode(13, OUTPUT);

}

void loop() {

 digitalWrite(13, HIGH); // turn the LED on (HIGH is the voltage level)

 delay(1000); // wait for a second

 digitalWrite(13, LOW); // turn the LED off by making the voltage LOW

 delay(1000); // wait for a second

}

Just like with the button example, first we must tell the Arduino that we wish to use digital pin 13 as an output.
We do this in the setup() function with pinMode(13,OUTPUT).

In the loop() function, we use the digitalWrite function to write logical “HIGH” and “LOW” to digital pin 13. Each
time we change the state, we wait for 1000ms (=1 second). The Arduino has been configured to translate logical
HIGH to a 5V signal, and logical LOW to a 0V signal.

ANALOG PINS
Let’s move to analog now. Analog signals on microcontrollers are a tricky topic. Most microcontrollers can’t
generate true analog signals. They tend to be better at “reading” analog signals. The ATMEGA328P, which is
used on the Arduino Uno, simulates analog signals using a technique called Pulse Width Modulation. The
technique is based on generating a pattern of logical HIGHs and LOWs in a way that generates an analog effect
to connected analog devices.

Let’s look at an example. We’ll take the same LED circuit from the digital pins section and make it behave in an
analog way. The only difference in the schematic is that you have to change the wire from digital pin 13 to go
to digital pin 9 instead. Here is the new schematic:

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

60

In this example, change the red wire to go to digital pin 9 instead of 13. We do this because we want to make the LED fade on and off via
pulse width modulation. Pin 9 has this capability, but pin 13 does not.

We have to switch the controlling pin because we want to simulate an analog signal through the use of Pulse
Width Modulation (PWM). Only a few of the pins on an Arduino can do this. One of these pins is 9, which we are
using in this example.

Before showing you how to write an analogue value to a PWM pin, look at this video to see what the end result
is like (Youtube, txplo.re/fadin2541):

Here is the sketch to make the LED fade on and off:

void setup() {

}

void loop() {

 for (int fadeValue = 0 ; fadeValue <= 255; fadeValue += 5) {

 analogWrite(9, fadeValue);

 delay(30);

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

61

 }

}

In the middle of the loop() function you will find a reference to the “analogWrite” function. This function takes
two arguments: the pin number, and an 8-bit PWM value.

In the example, the variable fadeValue contains a number that changes between 0 and 255 in hops of 5 each
time analogWrite. This happens because is called because it is inside a “for” loop. In the “for” loop definition,
the parameter “fadeValue += 5” is responsible for increasing the value of the fadeValue variable by 5, each time
the loop completes one iteration.

 When fadeValue is at 0, then the analogWrite function keeps the output at pin 9 to 0V. When fadeValue is at
255, then analogWrite keeps the output at pin 9 to 5V. When fadeValue is at 127, then analogWrite keeps the
output at pin 9 at 0V for half of the time and 5V for the other half.

Because the ATMEGA is a fully digital IC, it simulates analog by just switching between digital high and low very
quickly. For the LED to be brighter we give analogWrite a larger value, which simply increases the amount of
time the pin stays at logical high versus logical low.

What about reading the state of an analog device? Let’s use a potentiometer as an example. This example
combines an LED with a potentiometer.

In this example, when you turn the knob of the potentiometer in one direction, the LED becomes brighter. When you turn it towards the
other direction, it becomes fainter.

We want to make the LED become brighter when we turn the knob of the potentiometer towards one direction
and fainter when we turn it towards the other. To make this happen, we will get both an analog reading of the
state of the potentiometer, and produce PWM output for the LED.

In this video you can see how the circuit works (Youtube, txplo.re/youtu4e21).

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

62

Here is the sketch:

void setup() {

 pinMode(9, OUTPUT);

}

void loop() {

 int potValue = analogRead(A0);

 int brightness = map(potValue,0,1023,0,255);

 analogWrite(9,brightness);

}

In the setup function, we set pin 9 to output because this is where we have connected the LED. Pins are inputs
by default, so we don’t have to set analog pin 0 to be an input explicitly.

In the loop function, we get a reading from analog pin 0 (it’s name is “A0”) and store it in a local integer variable,
potValue. The function analogRead returns an integer with a range from 0 to 1024. Remember from the earlier
example that the PWM function can only deal with a value from 0 to 255. This means that the value we store in
potValue will not work with analogWrite.

To deal with this, we can use the Arduino “map” function. It takes a number that lies within a particular range
and returns a number within a new range. So in the second line of the loop function, we create a new local
integer variable, brightness. We use the map function to take the number stored in potValue (which ranges
from 0 to 1023) and output an equivalent number that ranges from 0 to 255.

Did you notice that the parameters of the map function match the range of potValue and brightness? The
conversion calculation is done for you, easy!

Analog read and write are easy once you understand the implications of the available resolution and Pulse
Width Modulation. With what you already know you will be able to work with a multitude of devices using the
circuits from the examples in this section.

For example, if you would like to use a membrane potentiometer like this one:

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

63

A membrane potentiometer. Electrically it works like a normal rotary potentiometer.

… just remove the rotary potentiometer from the example circuit and replace it with the membrane
potentiometer. You will be able to control the brightness of the LED by sliding your finger up and down the
membrane.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

64

WHAT’S NEXT?
Well done for making it to the end of this introduction to the Arduino! If nothing else, it shows that you are
serious about learning more about it, and, of course, for creating things with it.

Don’t stop now!

Continue your training with Arduino Step by Step Getting Started. This is the course I recommend to all new
Arduino makers. I have seen thousands of people completing is successfully, and going on to make amazing
things with their new skills.

With Arduino Step by Step Getting Started, you will continue with what you started with this e-book. It
contains more than 15 hours of video content, mini projects and quizzes, you will cover all the basics so that you
can enjoy learning about the Arduino.

Learn more about Arduino Step by Step Getting Started, and take advantage of or introductory special offer
now.

Here’s a testimonial from James, one of our graduate students:

I've returned to re-review this course... because I didn't realise how great the teacher and the course he
designed is.

Just blown away by how much I've been able to learn and understand in a relatively short period of time.

 I think the key point is that the course really deepens your understanding of the Arduino platform rather
than tells you how to do a particular task!

The questions are really useful in this way as you have to process what you just learnt.

Dr Peter Dalmaris is simply a great teacher (his podcast is worth checking out as well) - who clearly has a
massive enthusiasm for spreading knowledge and understanding which will allow other people to make
stuff.

Arduino: a starting up guide for complete beginners, by Peter Dalmaris, PhD | Last updated: February 11, 2019

techexplorations.com

65

The course has been a great pleasure to take part in and, as a teacher, I feel like I've learnt more than just
Arduino engineering.

Thanks so much to Dr Peter!

Happy making!

