
Sam
ple

 eB
oo

k c
on

ten
t

NODE-RED AND
RASPBERRY PI PICO

Peter Dalmaris, PhD

Sam
ple

 eB
oo

k c
on

ten
t

Node-RED and Raspberry Pi Pico, 1st Edition
By Dr Peter Dalmaris

Copyright © 2023 by Tech Explorations
TM

All rights reserved. This book or any portion thereof may not be reproduced or used in

any manner whatsoever without the express written permission of the publisher except for

the use of brief quotations in a book review.

Printed in Australia

First Printing, 2023

ISBN (PDF) : TBA

ISBN (epub): TBA

ISBN (mobi): TBA

Tech Explorations Publishing

PO Box 22, Berowra 2081 NSW

Australia

www.techexplorations.com

Cover designer: Michelle Dalmaris

Disclaimer
 The material in this publication is of the nature of general comment only, and does

not represent professional advice. It is not intended to provide specific guidance for

particular circumstances and it should not be relied on as the basis for any decision to

take action or not take action on any matter which it covers. Readers should obtain

professional advice where appropriate, before making any such decision. To the maximum

extent permitted by law, the author and publisher disclaim all responsibility and

liability to any person, arising directly or indirectly from any person taking or not

taking action based on the information in this publication.

Version 0.1

Sam
ple

 eB
oo

k c
on

ten
t

http://www.techexplorations.com

Did you find an error?

Please let us know.
Go to txplo.re/nodered, and fill in the form.
We’ll get it fixed right away.

Sam
ple

 eB
oo

k c
on

ten
t

http://txplo.re/kicadbook

About the author

Dr. Peter Dalmaris is an educator, an electrical engineer, electronics
hobbyist, and Maker. Creator of online video courses on DIY electronics and
author of several technical books. Peter has recently released his book 'Maker
Education Revolution', a book about how Making is changing the way we
learn and teach in the 21st century.

As a Chief Tech Explorer since 2013 at Tech Explorations, the company
he founded in Sydney, Australia, Peter’s mission is to explore technology and
help educate the world.

Tech Explorations offers educational courses and Bootcamps for
electronics hobbyists, STEM students, and STEM teachers.

A lifelong learner, Peter’s core skill lies in explaining difficult concepts
through video and text. With over 15 years of tertiary teaching experience,
Peter has developed a simple yet comprehensive style in teaching that
students from all around the world appreciate.

His passion for technology and the world of DIY open-source hardware,
has been a dominant driver that has guided his personal development and his
work through Tech Explorations.

Sam
ple

 eB
oo

k c
on

ten
t

About Tech Explorations

Tech Explorations creates educational products for students and
hobbyists of electronics who rather utilize their time making awesome
gadgets instead of searching endlessly through blog posts and Youtube
videos.

We deliver high-quality instructional videos and books through our
online learning platform, txplore.com.

Supporting our students through their learning journey is our priority,
and we do this through our dedicated online community and course forums.

Founded in 2013 by Peter Dalmaris, Tech Explorations was created after
Peter realised how difficult it was to find high-quality definitive guides for the
Arduino, written or produced by creators who responded to their reader
questions.

Peter was frustrated having to search for Youtube videos and blog
articles that almost never seemed to be made for the purpose of conveying
knowledge.

He decided to create Teach Explorations so that he could produce the
educational content that he wished he could find back then.

Tech Explorations courses are designed to be comprehensive, definitive
and practical. Whether it is through video, ebook, blog or email, our delivery
is personal and conversational.

It is like having a friend showing you something neat... the "AHA"
moments just flow!

Peter left his career in Academia after his passion for electronics and
making was rekindled with the arrival of his first Arduino. Although he was
an electronics hobbyist from a young age, something the led him to study
electrical and electronics engineering in University, the Arduino signalled a
revolution in the way that electronics is taught and learned.

Peter decided to be a part of this revolution and has never looked back.
We know that even today, with all the information of the world at your

fingertips, thanks to Google, and all the components of the world one click
away, thanks to eBay, the life of the electronics hobbyist is not easy.

Busy lifestyles leave little time for your hobby, and you want this time
to count.

We want to help you to enjoy your hobby. We want you to enjoy
learning amazing practical things that you can use to make your own
awesome gadgets.

Sam
ple

 eB
oo

k c
on

ten
t

Electronics is a rewarding hobby. Science, engineering, mathematics,
art, and curiosity all converge in a tiny circuit with a handful of components.

We want to help you take this journey without delays and frustrations.
Our courses have been used by over 70,000 people across the world.
From prototyping electronics with the Arduino to learning full-stack

development with the Raspberry Pi or designing professional-looking printed
circuit boards for their awesome gadgets, our students enjoyed taking our
courses and improved their making skills dramatically.

Here's what some of them had to say:

"I'm about half way through this course and I am learning so much. Peter is
an outstanding instructor. I recommend this course if you really want to learn about
the versatility of the amazing Raspberry Pi" -- Scott

"The objectives of this course are uniquely defined and very useful. The instructor
explains the material very clearly." -- Huan

"Logical for the beginner. Many things that I did not know so far about Arduino but
easy to understand. Also the voice is easy to understand which is unlike many courses
about microcontrollers that I have STARTED in the past. Thanks" -- Anthony

Please check out our courses at techexplorations.com and let us be part
of your tech adventures.

Sam
ple

 eB
oo

k c
on

ten
t

From the back cover

TBA

Sam
ple

 eB
oo

k c
on

ten
t

1

Requirements

You will need a few things to make the most of this book. You probably
already have most of all of them:

• A computer running Windows, Mac OS or Linux. If you have a spare
Raspberry Pi Model B (any generation) or an old PC, you can use it as
your Node-RED server.

• Access to the Internet.
• Hardware (all available in a kit from Sunfounder):

⁃ A Raspberry Pi Pico W
⁃ A breadboard and wires
⁃ Eight LEDs
⁃ Resistors (various Ohm ratings)
⁃ Buttons and slide switches
⁃ Sensors: DHT11, HCSR04, motion PIR sensor, water level sensor,

thermistor, analog light sensor.
⁃ A joystick
⁃ A 5V relay
⁃ An RFID receiver and tag.
⁃ An infrared receiver and remote control.
⁃ A 2x16 LCD with the I2C backpack.
⁃ A 74HC595N THT integrated circuit.
⁃ A WS2812 RGB LED strip with eight RGB LEDs
⁃ A small servo motor.
⁃ A small DC motor

Sam
ple

 eB
oo

k c
on

ten
t

2

Figure not set.Not set.not set.1: The Kepler kit from Sunfounder contains all the parts you will need
for the projects in this book.

Sam
ple

 eB
oo

k c
on

ten
t

3

The book errata reporting and resources web page

This book has a web page. This page contains an errata form to report
bugs and access related resources as they become available.

Follow this URL to reach the book page: https://txplo.re/nodered.

Sam
ple

 eB
oo

k c
on

ten
t

4

This book is a learning guide and a reference.

You can use it to learn Node-RED, Raspberry Pi Pico W, and
Micropython.

You can also use it as a source of information for these topics.

I have organised this book into four parts to fulfil these dual roles.

Part 1 is dedicated to Node-RED for the absolute beginner. In Part 1,
you will learn about Node-RED and event-driven systems, how to install an
instance using the Docker option, the basics of nodes and flows, the
dashboard and MQTT. If you are new to Node-RED, read the chapters in Part
1 carefully and complete the various projects.

Part 2 brings the Raspberry Pi Pico W into the mix. In the chapters of
Part 2, you will learn how to use the Pico W as a Node-RED peripheral. You
will learn to use MQTT to enable communications between the Pico and the
Node-RED instance. You will also learn how to connect different hardware
components to the Pico to implement simple circuits and use Node-RED (and
its Dashboard) to control these components or view the data they produce. In
Part 2, you will encounter motion, distance and water level sensors, motors,
displays, relays, and joysticks, to mention a few. In all projects in Part 2, you
will create Node-RED flows and write Raspberry Pi Pico W Micropython
scripts that typically implement an event-driven system.

Part 3 provides a primer to MicroPython. MicroPython is a language
specifically designed for embedded systems using Python 3 syntax. Python 3
is one of the most successful programming languages ever. Python's syntax is
straightforward, making it easy for beginners to learn. This simplicity
encourages good programming practices and allows for a focus on problem-
solving rather than syntax issues. MicroPython brings those attributes to
Microcontroller programming. If you are not familiar with Python or
MicroPython, the chapters in Part 3 will help you learn everything you need
to be able to confidently write MicroPython programs for the Raspberry Pi
Pico (and Pico W), as well as any other of the many Microcontroller boards
that support MicroPython.

Sam
ple

 eB
oo

k c
on

ten
t

5

Finally, Part 4 provides additional Node-RED resources. These
resources consist of content on important Nodes (all explained with the help
of mini-projects), control structures, and ways to integrate your Node-RED
flows with external services and APIs. In Part 4, you will learn how to create
power flows that can be used in more advanced automation settings.

If you are new to Node-RED, Raspberry Pi Pico and Micropython, I
recommend reading this book in a linear fashion. Don’t skip anything!

If you are familiar with Node-RED, you can quickly read Part 1 and
continue with the projects in Part 2.

If you are unfamiliar with MicroPython, start with Part 3 and continue
with other parts of the book. The Part 3 primer on MicroPython is a mini-book
in this book and can be used independently of the rest of the content.

In this book, I chose Docker as the infrastructure technology on which I
installed my Node-RED instance. You may prefer a different method (and
there are several). You are free to choose any installation method you prefer.
As long as, in the end, you have an accessible instance of Node-RED and
MQTT broker running, you will be able to complete all of the projects in this
book.

Enjoy!

Sam
ple

 eB
oo

k c
on

ten
t

6

Table of Contents
Part 1: Node-RED novice to hero 10

1. What is Node-RED? 11
2. Node-RED in IoT and event-driven systems 15
3. Communication in Node-RED: Protocols and Methods 18
4. Node-RED installation options 23
Setup Node-RED using Docker ??

Docker Containers: Hardware Options and Considerations ??
Create the Ubuntu 22.04 VM ??
Install Docker on the server ??
Install Node-RED using Docker ??
Testing your new Node-RED server ??
Setup auto-start with Docker Compose ??
Setup Node-RED for data persistence ??
Maintaining your instance of Node-RED ??
Security ??

Node-RED basics ??
Understanding the Node-RED editor ??
Nodes ??
Creating and deploying flows ??
Best Practices for Working with Flows ??
The "debug" node ??
The "function" node ??
The "inject" node ??
The "complete" node ??
The "delay" node ??
The "trigger" node ??
Node-RED settings and configuration ??
Node-RED documentation and resources ??

7. Node-RED dashboard 29
7.1. Text input and output 32
7.2. The button 40
7.3. The gauge and slider 46
7.4. The switch 51
The dropdown ??
The form ??

Sam
ple

 eB
oo

k c
on

ten
t

7

The UI template ??
Node-RED and MQTT ??

Installing MQTT Mosquitto on Ubuntu Server 22.04 ??
Test the MQTT service on the command line ??
Using authenticated sub and pub ??
Test MQTT in Node-RED ??
MQTT with Raspberry Pi Pico ??
MQTT pub example ??
MQTT sub example ??

Part 2: Node-RED & RPi Pico Experiments ??
Frequently used patterns ??

WIFI ??
MQTT sub and pub ??
Node-RED ??

Warm up ??
Gauge and potentiometer ??
Button ??
Sample button with interrupts ??
LED control ??
LED control without polling ??
Combined ??

Inputs and outputs ??
Slide switch ??
Joystick ??
Relay ??
RFID ??
IR receiver and transmitter ??

Displays and LEDs ??
I2C LCD ??
Control 8 LEDs with the 74HC595N ??
WS2812 Strip RGB LED strip ??

Motors ??
Servo motor ??
DC motor ??

Sensors ??
Temperature with DHT11 ??
HC-SR04 ultrasosnic sensor ??
Motion sensor ??

Sam
ple

 eB
oo

k c
on

ten
t

8

Water level sensor ??
Thermistor ??
Analog light sensor ??

Part 3: Raspberry Pi Pico, a primer ??
Introduction to the Raspberry Pi Pico and Pico W ??
Getting Started with Raspberry Pi Pico and Thonny ??
MicroPython and Raspberry Pi Pico ??
Micropython, a primer ??

An introduction to MicroPython ??
MicroPython Language Constructs ??
MicroPython frequently used commands ??
MicroPython Modules ??
MicroPython Project Examples ??
Troubleshooting and Best Practices ??
Glossary of MicroPython Terms ??
References and Further Reading ??

Programming Raspberry Pi Pico with MicroPython ??
Serial communications with the Raspberry Pi Pico ??
SPI and I2C serial communications ??
Wifi and Bluetooth with the Raspberry Pi Pico ??
Interfacing with Sensors and Actuators ??

Part 4: More Node Red topics ??
Other useful nodes and features ??

The "catch" node ??
The "linkout" and "linkin" nodes ??
The "switch" node ??
The "range" node ??
The "RBE" (Report by Exception) node ??
The JSON node ??
Node groups ??
High-level review of other useful nodes by function ??
Credentials ??
Environment variables ??

Control Structures and Loops ??
Conditional nodes ??
Iteration nodes ??
Conditional and iteration nodes example flow ??

Integrating External Services and APIs ??

Sam
ple

 eB
oo

k c
on

ten
t

9

Connecting to an SQL database ??
Using RESTful APIs and web services ??
Get weather information from OpenWeatherMap.org ??
Datalogging to a Google Sheet ??
Reading data from a Google Sheet ??

Sam
ple

 eB
oo

k c
on

ten
t

10

Part 1: Node-RED novice to hero

Sam
ple

 eB
oo

k c
on

ten
t

11

1. What is Node-RED?
Node-RED is an open-source flow-based development tool that makes

it easy to wire together devices, APIs, and online services. Imagine being able
to drag and drop blocks on a screen to create a flowchart that does something
—like turning on your lights at sunset or sending you an email when a sensor
detects movement. That's what Node-RED lets you do, all without requiring
you to write extensive code.

What is flow programming?
Flow programming in the context of Node-RED is a way to build

applications by connecting different "nodes" in a flowchart-like manner. Each
node performs a specific task, like reading from a sensor, performing a
calculation, or sending an email. You create a "flow" by dragging and
dropping these nodes onto a canvas and connecting them with "wires" to
define the order of operations. The result visually represents your application
logic, which you can deploy with a single click.

In traditional text-based programming, you write lines of code to define
what your application should do. This often involves setting up loops,
conditionals, and functions, and it requires a good understanding of the
programming language you're using. In contrast, flow programming in Node-
RED abstracts away much of this complexity. Instead of writing code, you're
essentially drawing your program. This makes it easier to see the big picture,
understand the data flow, and spot any potential issues.

Flow programming shines in scenarios where quick prototyping and
iteration are essential. Because you can see the entire logic laid out visually,
making changes or adding new functionalities is easier. You don't have to sift
through lines of code to find the section you need to modify; you can
rearrange or add nodes on the canvas.

It's also beneficial for people who may not have a strong background in
programming. The drag-and-drop interface and pre-built nodes make it
accessible for beginners, allowing them to focus on solving the problem rather
than getting bogged down by syntax and language-specific rules.

Flow programming is compelling for IoT applications and automation
tasks. When dealing with multiple devices, sensors, and APIs, the visual
nature of flow programming makes it easier to manage the complexity. You

Sam
ple

 eB
oo

k c
on

ten
t

12

can quickly see how data moves from your sensors to your logic nodes and
output actions, making the development process more intuitive.

Where Can You Use Node-RED?
Before continuing, looking at some areas of everyday life where Node-

RED is being used with great results is helpful. This will help you understand
the impact that Node-RED can have on your projects. To keep this segment
short, I’ll touch only on three areas where Node-RED makes a real difference:
industry, education, and home automation.

In industrial settings, Node-RED is a game-changer. For instance, in
manufacturing, it can be used to automate entire production lines. By
connecting to PLCs (Programmable Logic Controllers) and sensors, Node-
RED can control the sequence of machinery operations. It's also valuable for
energy management. Companies use Node-RED to monitor and control how
much energy is being used in real-time, allowing them to optimise
consumption and reduce costs. Beyond that, it's used for predictive
maintenance by collecting data from various machinery and using it to predict
when a machine is likely to fail, thus scheduling timely maintenance.

Educational institutions find Node-RED to be an excellent tool for
teaching and research. It's often used to introduce students to the concepts of
IoT, networking, and automation in a hands-on manner. Because of its ease of
use, students can quickly move from theory to practice. In research settings,
Node-RED serves as a quick prototyping tool, enabling researchers to test
their ideas without spending much time on initial setup and coding.

Node-RED offers endless possibilities for the DIY enthusiast or anyone
interested in smart homes. You can set up intelligent lighting systems that
adjust based on the time of day or occupancy. You can even create a home
security system that sends you alerts based on sensor data. The possibilities
are limited only by your imagination and the devices you have at hand.

The Tech Behind Node-RED
Node.js is an open-source, cross-platform JavaScript runtime

environment that executes JavaScript code outside a web browser. Initially
released in 2009, it has become a foundational technology for server-side
development. Node.js allows you to build scalable network applications using
JavaScript, a language traditionally used for client-side scripting in web
browsers. It is incredibly lightweight and can run on various platforms, from a
Raspberry Pi to a full-scale server.

Sam
ple

 eB
oo

k c
on

ten
t

13

It uses JSON to represent the flows, making it human-readable and
machine-friendly. The logic is encapsulated in “nodes,” essentially pre-written
JavaScript functions you can string together to create your application.

Node.js is commonly used to build web servers and RESTful APIs. Its
non-blocking, event-driven architecture makes it well-suited for handling
multiple simultaneous connections, making it a popular choice for real-time
applications. Applications like chat rooms and collaborative editing tools
often use Node.js to manage real-time, bidirectional communication between
the server and clients.

Node.js excels in scenarios where data streaming is crucial. For
example, it can process files while uploaded, reducing the overall processing
time. Node.js is frequently used in microservices architectures due to its
ability to handle multiple small tasks concurrently. Companies like Netflix
and Uber employ Node.js to manage their complex, distributed systems.

If you plan to use Node.js solely for Node-RED, you don't need to be an
expert in Node.js. A basic understanding of JavaScript and how to install
Node.js packages would be sufficient. Node-RED abstracts most of the
complexities, allowing you to focus on the logic of your flows rather than the
underlying code.

If you can only remember four facts about Node.js, these should be:

1. Non-blocking, Event-Driven Architecture: Node.js uses a single-
threaded, non-blocking event loop, allowing it to handle many
connections simultaneously.

2. NPM (Node Package Manager): Node.js has a rich ecosystem of
libraries and frameworks available through NPM that can simplify the
addition of new functionalities to your projects.

3. Cross-Platform: Node.js can run on various operating systems,
including Windows, macOS, and Linux, making it highly versatile.

4. Community Support: Being open-source and popular means that
Node.js has a large, active community contributing to its development
and a wealth of tutorials and resources.

Node.js is a powerful runtime environment with many applications
beyond Node-RED. Its non-blocking architecture and rich ecosystem make it a
go-to choice for many projects, from web servers to real-time communication
apps. Even if you're only interested in using it for Node-RED, a minimal

Sam
ple

 eB
oo

k c
on

ten
t

14

understanding will suffice, making it accessible for users with varying coding
expertise.

And that’s all you need to know about this (unless you plan to build
Node.js applications).

Node-RED and Microcontrollers
One of the most exciting aspects of Node-RED is its ability to interface

with microcontrollers like Arduino and ESP8266. You can read sensor data
from these devices and send commands back to control actuators, all through
Node-RED's intuitive interface. This makes it an excellent tool for anyone
looking to get into hardware hacking or create custom IoT devices.

In summary, Node-RED is a versatile and powerful tool with
applications ranging from industrial automation to education and home DIY
projects. Its drag-and-drop interface makes it accessible for people of all skill
levels, while its underlying technology ensures it's robust enough for
professional use. Whether you're a hobbyist looking to smarten up your home
or an engineer aiming to optimise a production line, Node-RED has
something to offer.

Sam
ple

 eB
oo

k c
on

ten
t

15

2. Node-RED in IoT and event-driven systems
The Internet of Things (IoT) has revolutionised how we interact with

devices and systems daily. As IoT networks grow, the need for an efficient,
user-friendly, and powerful tool to manage these connected devices becomes
apparent. Enter Node-RED, an open-source, flow-based programming tool
that simplifies the creation, deployment, and management of IoT applications
and event-driven systems.

Node-RED's flexibility and ease of use make it a perfect fit for various
IoT use cases, such as:

Device Management and Control
Node-RED simplifies the process of connecting and managing IoT

devices. It supports many communication protocols, such as MQTT, HTTP,
WebSocket, and more, making it easy to collect data from sensors, control
actuators, and interact with devices in real time.

For example, a Node-RED flow can be created to monitor a sensor’s
temperature and humidity data, process the data, and control a smart
thermostat based on predefined conditions.

Data Processing and Analytics
IoT applications often require processing and analysing data from

multiple sources. Node-RED provides various built-in nodes for data
processing, such as Function nodes (for custom JavaScript code), Switch nodes
(for conditional routing), and Change nodes (for modifying message
properties).

For instance, Node-RED can aggregate sensor data from multiple
sources, filter out irrelevant information, and perform calculations to derive
insights, such as detecting anomalies or predicting equipment failure.

Integration with Cloud Services and APIs
Node-RED enables seamless integration with popular cloud platforms,

such as AWS, Azure, Google Cloud, and IBM Watson, as well as third-party
APIs, like Twitter, Telegram, and Slack. This allows developers to build IoT
applications that leverage cloud-based services for data storage, analytics, and
machine learning.

Sam
ple

 eB
oo

k c
on

ten
t

16

An example use case involves using Node-RED to send sensor data to a
cloud-based database, perform real-time analytics, and trigger notifications or
alerts through third-party messaging services.

Node-RED in Event-Driven Systems
Event-driven systems are designed to respond to specific events or

changes in state. Node-RED's flow-based programming model and support
for various communication protocols make it an excellent choice for building
event-driven applications.

Home Automation
Node-RED can create a custom home automation system that responds

to events like motion detection, temperature changes, or voice commands.
Integrating smart home devices and APIs, Node-RED can control lights,
HVAC systems, security cameras, and more based on predefined rules and
conditions.

Industrial Automation and Monitoring
In industrial settings, Node-RED can monitor and control equipment

based on events or conditions, such as motors, valves, and conveyor belts.
This can help optimise production processes, reduce downtime, and ensure
equipment safety.

For example, a Node-RED flow can be created to monitor the status of a
production line, detect when a machine malfunctions, and automatically shut
down the affected equipment or send alerts to maintenance staff for
immediate action.

Smart Cities and Infrastructure
Node-RED can be crucial in developing innovative city applications

that respond to real-time events, such as traffic congestion, air quality, or
energy consumption. By integrating with various sensors and services, Node-
RED can be used to create intelligent systems that optimise urban
infrastructure and enhance the quality of life for residents.

For instance, a Node-RED flow can be designed to analyse traffic data
from multiple sources, detect congestion or accidents, and dynamically adjust
traffic light timings or notify emergency services.

Sam
ple

 eB
oo

k c
on

ten
t

17

Conclusion
Node-RED's visual programming interface, extensive library of nodes,

and support for a wide range of communication protocols make it a powerful
tool for developing IoT and event-driven applications. Its flexibility and ease
of use enable developers to create custom solutions for various use cases, from
home automation and industrial monitoring to smart cities and infrastructure
management.

As the IoT landscape continues to evolve, Node-RED is poised to play a
significant role in developing and deploying connected systems that enhance
our daily lives and drive innovation across industries.

Sam
ple

 eB
oo

k c
on

ten
t

18

3. Communication in Node-RED: Protocols and
Methods

Node-RED has an impressive ability to communicate with other
systems thanks to its compatibility with various communication protocols. Its
flexibility in this domain is key to its versatility. Let's delve deeper into the
protocols and communication methods used by Node-RED.

HTTP and HTTPS
HTTP (HyperText Transfer Protocol) and its secure variant, HTTPS, are

fundamental to the web as we know it. They serve as the basis for data
communication on the World Wide Web. In Node-RED, you can use the “http”
node to make HTTP requests to APIs on the web. For example, you could use
an HTTP GET request to fetch data from a weather API or an HTTP POST
request to send data to a database.

When working with Node-RED, using HTTP and HTTPS can be really
handy. HTTP is easy to set up, and you don't need special certificates. It's great
for quick tests and prototypes. HTTPS, on the other hand, adds a layer of
security by encrypting the data. This is crucial if you're dealing with sensitive
information.

However, with HTTP (notice the lack of the “S” from the acronym),
your data is not encrypted, so transmitting confidential information is unsafe.
Anyone can intercept it. HTTPS solves this problem but is a bit more
complicated to set up. You'll need to get a security certificate, and sometimes
there might be compatibility issues with older devices or systems.

MQTT
MQTT (Message Queuing Telemetry Transport) is a lightweight

messaging protocol often used in IoT applications where bandwidth and
power consumption are concerns. With MQTT, devices publish messages to
topics, and other devices subscribe to these topics to receive the messages.
Node-RED has built-in MQTT nodes, making integrating with MQTT-based
systems straightforwardly. For instance, you could have a Raspberry Pi
publish temperature sensor data to an MQTT topic and then use Node-RED to
subscribe to this topic and react accordingly.

Sam
ple

 eB
oo

k c
on

ten
t

19

MQTT is a popular choice for sending and receiving data when using
Node-RED. As I mentioned earlier, MQTT is lightweight. It doesn't use much
bandwidth, which is great if you work with devices with limited resources.
It's also good at handling intermittent connections, so if your network is
shaky, MQTT can still get the job done. Plus, it's designed for real-time
communication, so you get updates as they happen.

On the flip side, MQTT has some limitations. It’s not the best choice for
large data sets because it's designed for small, frequent messages. Also, while
MQTT itself is pretty secure, adding extra layers of security can be a bit
complex. You might need to integrate it with other security protocols, which
could be a hassle if you're new to this.

MQTT is great for real-time, lightweight data communication, but it
might not be the best fit for every scenario, especially those requiring high
security or large data transfers.

WebSockets
WebSockets is a protocol that provides full-duplex communication

between a client and server over a long-lived connection. This is especially
useful for applications that require real-time data updates. Node-RED
provides a “websocket” node for client and server-side communication using
WebSockets. This allows you to create interactive, real-time flows.

WebSockets can be a great way to handle data communications using
Node-RED. One of the coolest things about WebSockets is that they allow for
two-way communication between the server and the client. This means you
can send and receive data at the same time, making your applications more
interactive and responsive. WebSockets are also pretty fast because data can
flow freely once the connection is established without repeatedly opening and
closing connections.

On the other hand, WebSockets come with their own set of challenges.
One issue is that they can be more complex to set up than other protocols like
HTTP. You must ensure the client and server are configured correctly to
handle WebSocket connections. Not all network configurations also support
WebSockets, so you might run into issues if you're behind certain types of
firewalls or proxies.

TCP and UDP
TCP (Transmission Control Protocol) and UDP (User Datagram

Protocol) are two fundamental protocols of the Internet protocol suite. TCP is

Sam
ple

 eB
oo

k c
on

ten
t

20

connection-oriented and ensures the reliable delivery of a stream of bytes,
while UDP is simpler, connectionless, and suitable for scenarios where speed
is more important than reliability. Node-RED provides TCP and UDP nodes
for handling raw TCP and UDP communications, giving you even more flow
flexibility.

If you're working with Node-RED, TCP is a reliable way to send your
data. It makes sure all your data packets arrive in the correct order. This is
great when you can't afford to lose data, like sending a file or updating a
database. TCP also handles congestion well, so if your network is busy, it will
adjust to ensure your data gets through.

The downside of TCP is that it can be slower than other methods. It
takes time to establish a connection, and the checks it performs to ensure data
integrity can add delays. So, TCP might not be the best choice for real-time
applications where speed is crucial.

UDP, on the other hand, is all about speed. It sends data without
worrying too much about whether it arrives or not. This is good for things like
streaming video or audio, where you'd rather lose a few packets than have a
delay.

The problem with UDP is that it's not reliable. If ensuring that every
piece of data arrives is important to you, then UDP is risky. It doesn't
guarantee delivery or order so you might get incomplete or jumbled data.

Serial
Node-RED also supports the serial communication protocol, commonly

used for interfacing with hardware such as microcontrollers. With the serial
node, you can read data from a serial port or write data to it. This is handy
when working with devices like Arduino, which often use serial
communication.

Using serial communications with Node-RED can be a straightforward
way to communicate with hardware devices. It's a tried-and-true method
that's been around for a long time, so it's well-supported and reliable. You'll
often find it used in industrial settings or for connecting to older equipment.
It's also simple to set up; you usually just need to plug in a cable and
configure a few settings.

Serial communications has its limitations. One of the main drawbacks is
that it's not ideal for long-distance communications. The signal can degrade
over distance, so it's mostly used for connections that are close by. Also, it's
generally slower than other modern data transfer methods, so it might not be

Sam
ple

 eB
oo

k c
on

ten
t

21

the best choice for quickly transferring large amounts of data. Another thing
to consider is that many modern computers don't come with a built-in Serial
COM Port, so you might need an adapter if your Node-RED instance is
running on more modern computer hardware.

In this book, as an example, I have set up my Node-RED instance to run
inside a virtual machine, which, in turn, runs inside a modern personal
computer without a serial port. Therefore, I cannot use this communication
method without an adaptor.

On the other hand, if I had used a Raspberry Pi to host the Node-RED
server, I would have been able to create flows that use the Pi’s serial port to
establish serial communication with microcontrollers such as the Raspberry Pi
Pico and the Arduino UNO, both of which have support for serial
communications.

Modbus
Modbus is a protocol often used in industrial applications for

communication between electronic devices. If you're working in an industrial
setting with Modbus equipment, you'll be pleased to know that Node-RED
can handle this, too, thanks to community-contributed nodes.

Modbus can be a solid choice for data communications using Node-
RED, especially for industrial applications. One of the big pluses is that
Modbus is widely used in industrial settings, so it's well-tested and reliable.
It's also straightforward to set up. You can use it over various connections, like
serial or TCP, giving you some flexibility. Modbus is also good for systems
that require high reliability, as it has built-in error checking.

On the downside, Modbus has some limitations. It's not the fastest
protocol out there, so it might not be the best fit if you need to transfer large
amounts of data quickly. Also, while it's great for simple tasks, it's not as well-
suited for more complex data structures. You might find it limiting if you need
to handle various data types or complex commands. Another thing to
consider is that it doesn’t have built-in security features because it’s an older
protocol. You'll need to add those yourself if security is a concern.

Modbus is reliable and well-suited for industrial applications but may
not be the best choice for high-speed or complex data communications.

Node-RED's extensive protocol support makes it an excellent tool for
integrating diverse systems. Whether pulling data from a web API,

Sam
ple

 eB
oo

k c
on

ten
t

22

communicating with an IoT device over MQTT, or reading sensor data from a
microcontroller over a serial connection, Node-RED has you covered.

Sam
ple

 eB
oo

k c
on

ten
t

23

4. Node-RED installation options
When it comes to installing and setting up a Node-RED server, several

options are available that cater to a range of technical requirements and
resource availabilities. These options include installing Node-RED to your ”
regular” work computer as you would with any other program, using a
Raspberry Pi or other Linux computers, setting up a Virtual Machine (VM), or
leveraging Docker. Each choice has unique features and advantages, but as we
move forward, we will focus on the benefits of Docker as a preferred choice.

Installing Node-RED on Your Local Computer
Node-RED is very flexible when it comes to operating systems. You can

install it on Windows, macOS, and various distributions of Linux.
Installing Node-RED locally has several advantages. For one, you have

complete control over your environment. You can customise settings, add
nodes, and test flows without worrying about external factors like network
latency. It's also easier to integrate with other software and hardware on your
computer, such as a webcam and microphone. Plus, you don't have to worry
about monthly subscription fees or data limits that you might encounter with
cloud-based solutions. Another advantage worth considering is that you do
not need access to another computer with local installation. You already have
a computer, and it’s the one that you are (probably) working on right now!

However, the local installation has several significant disadvantages. At
the top of the list is that your work computer can be a busy and constantly
changing environment. If you are like me, your work computer is where you
do all your programming, where you install, remove, reconfigure and
experiment with software. It has multiple network connections and lots of
connected devices. Once in a while, it will run out of disk space, or other
issues will pop up. All this can affect the smooth operation of server software
like Node-RED, and you may spend too much time troubleshooting self-
inflicted problems rather than learning and using Node-RED. Another issue to
consider is that since your flows are stored locally, you won’t be able to access
them from another computer unless you’ve set up remote access. And let's not
forget, if your computer crashes, you risk losing all your work unless you've
been diligent about backups.

Sam
ple

 eB
oo

k c
on

ten
t

24

For these reasons, I do not recommend installing Node-RED on your
work computer unless you install it on a dedicated Virtual machine (see
below) so that there is robust isolation between the host and the guest OS.

Raspberry Pi and Other Linux Computers
By deploying Node-RED on a dedicated Linux machine, such as a

Raspberry Pi or an old re-purposed PC, you're positioning yourself for a
highly efficient and customisable experience. Let's explore the nuances of this
approach, from compatible Linux operating systems to the inherent pros and
cons.

Node-RED offers compatibility with a range of Linux distributions.
While Raspbian remains the go-to choice for Raspberry Pi users, other
distributions like Ubuntu and Fedora are also viable options. Your selection
will likely hinge on the specific requirements of your project or your
familiarity with a particular Linux distribution.

Linux's open-source nature stands as one of its most compelling
advantages, offering an unparalleled customisation level. Additionally,
“headless” Linux distributions are generally lightweight, making them well-
suited for hardware with limited computational resources, such as a
Raspberry Pi. This results in a cost-effective yet powerful solution for running
Node-RED. Furthermore, Linux's reputation for stability and security adds
more reliability to your setup.

If you are unfamiliar with the term “headless”, here is what you need to
know. ”headless Linux” refers to a Linux server or system run without a
graphical user interface (GUI). In other words, it doesn't have the graphical
desktop environment that you might be used to seeing on consumer-focused
computers. Instead, all interactions with the system are done through the
command line interface (CLI). Running Linux in headless mode is resource-
efficient, as it eliminates the need for the system to allocate resources to the
GUI. This is particularly beneficial for servers or systems designed to run
specific tasks and don't require user interaction via a graphical interface. It's
also a typical setup for Linux instances running on cloud platforms or in data
centres.

Despite its merits, Linux has challenges, particularly for those less
acquainted with its environment. The operating system often necessitates
command-line interactions, which can be daunting for newcomers. Moreover,
Linux's robustness and stability come at the cost of limited software
compatibility, especially for applications designed with Windows or macOS in

Sam
ple

 eB
oo

k c
on

ten
t

25

mind. However, I recommend that you use your Linux machine as a Node-
RED host only and not as a general-purpose computer; hence, the
compatibility issue with applications that you find on Windows and macOS
computers is a non-issue.

Raspberry Pi, a low-cost, credit-card-sized computer, is one of the most
popular choices for running a Node-RED server. Its affordability and
accessibility make it a compelling choice for hobbyists and enthusiasts just
starting with the Internet of Things (IoT) and Node-RED. Other Linux
computers, with their robust and open-source nature, also serve as great hosts
for Node-RED.

Installing Node-RED on Raspberry Pi or any other Linux system is
straightforward. With a few commands in the terminal, your server will be up
and running. However, while these systems are great for smaller, personal
projects, they might not scale well for larger, more resource-intensive
applications.

Virtual Machine
Deploying Node-RED on a Linux Virtual Machine (VM) offers a unique

blend of flexibility and isolation. This approach allows you to run Node-RED
in a controlled environment, separate from your primary operating system.
The virtual machine can run on your local (“work”) computer or another
computer in your local network or accessible via the Internet.

In terms of virtualisation options, there are several to choose from.
Which one you pick does not matter much since all options can run and
manage Linux guests. For example, options consider VMware, VirtualBox,
Parallels, QEMU, Citrix, and Zen (and there are more). These are among the
most popular and user-friendly options. Both provide a wide range of features
and are well-documented, making it easier to find help if you run into issues.
As I mentioned, all of these options support Linux guests; your choice will
depend on your existing infrastructure and specific project requirements.

One of the most compelling benefits of using a VM is its isolation. Your
Node-RED installation will be contained within the VM, separate from your
primary operating system. This makes it easier to manage dependencies and
avoid conflicts with other software. Additionally, VMs are highly portable.
You can quickly move them between computers or upload them to cloud
services. This portability simplifies backup procedures and makes it easier to
share your Node-RED setup with others.

Sam
ple

 eB
oo

k c
on

ten
t

26

However, running Node-RED requires some planning and forward-
thinking. Virtual machines consume additional system resources, including
CPU, memory, and disk space, which could impact the performance of your
primary operating system. You must be careful when you plan the
deployment of VMs on a host so that the VM does not try to consume more
resources (such as RAM, disk space and CPU cores) than are available on the
host machine. Moreover, setting up a VM involves a series of configuration
steps that might be daunting for those unfamiliar with virtualisation
technology. Lastly, while VMs provide isolation, they can also add a layer of
complexity to your setup, especially regarding networking and file sharing
between the host and guest operating systems.

Installing Node-RED on a Linux Virtual Machine offers a flexible and
isolated environment, ideal for testing and development. However, it does
come with the trade-off of additional resource consumption and complexity. If
you're comfortable navigating these challenges, a VM can be an excellent
platform for your Node-RED projects.

My personal choice, and the one that I deployed for the production of
this book, is to combine virtualisation with Docker (which I will discuss next).
You will learn about the process I followed in the next chapter. The process
involves setting up a Linux virtual machine on a small Windows personal
computer (to act as a Docker container host) and installing Node-RED using
the Docker method.

Docker: The Preferred Choice
While all of these options are valid and have unique advantages,

Docker has emerged as a preferred choice for many when setting up a Node-
RED server. Docker is a platform that allows you to package an application
and its dependencies into a "container." This container can then be easily
moved and run across different computing environments. Think of a Docker
container as a lightweight, standalone, executable software package that
includes everything needed to run a piece of software.

One of the primary benefits of using Docker for Node-RED is the ease
of deployment. Docker containers encapsulate all the dependencies and
configurations required, making the installation process remarkably
straightforward. This eliminates the "it works on my machine" issue, where
software behaves differently on different systems. Additionally, Docker
containers are isolated from each other and the host system, enhancing
security and reducing conflicts between software components. This isolation

Sam
ple

 eB
oo

k c
on

ten
t

27

also makes it easier to manage different Node-RED versions or run multiple
instances simultaneously.

While Docker offers numerous advantages, it's not without its
drawbacks. For starters, there's a learning curve associated with
understanding Docker concepts like containers, images, and Dockerfiles.
Getting comfortable might take some time if you’re new to these. In this book,
I used the Docker method to install my Node-RED instance, and I will show
you how to install yours step-by-step.

Also, Docker containers do consume system resources, albeit less than
traditional virtual machines. This could be a concern if you run on hardware
with limited resources. Lastly, while Docker provides isolation, it can
sometimes complicate networking configurations, especially for those not
well-versed in networking principles.

Since Docker is the preferred method for Node-RED installation in this
book, I take another moment to list the key takeaway advantages that
convinced me to use this method:

1. Portability: Docker allows you to package an application with all its
dependencies into a standardised unit called a Docker container. This
container can run on any system that has Docker installed, irrespective
of the underlying operating system. This high level of portability
simplifies deployment and reduces potential issues caused by
differences in system environments.

2. Isolation: Similar to VMs, Docker provides isolation. However, Docker
containers are less resource-intensive than VMs, as they share the host
system's kernel and do not require an entire operating system. This
efficiency means you can run more containers on a given hardware
combination than with VMs.

3. Scalability: Docker's design makes it easy to scale applications. You can
quickly start, stop, replicate, or destroy containers with a single
command or via Docker's APIs.

4. Consistency: With Docker, you can maintain consistency across
multiple development, testing, and production environments. This
consistency can significantly reduce developers’ “it works on my
machine” problem.

5. Node-RED support: Node-RED’s Docker support and documentation
are excellent. The Node-RED documentation includes a straightforward
and detailed guide on how to install the software with Docker. This is

Sam
ple

 eB
oo

k c
on

ten
t

28

the guide that I based my process on. See more here: https://
nodered.org/docs/getting-started/docker.

While Raspberry Pi, other Linux computers, and VMs are all viable
options for installing a Node-RED server, Docker's portability, resource
efficiency, scalability, and consistency make it an excellent choice for
development and production environments. With Docker, you can build, test,
and deploy Node-RED applications quickly and confidently on any hardware
that supports it, be it an embedded computer, a laptop, a local server, or a
cloud server. In the next chapter, you will learn how to install a Node-RED
server using the Docker option.

Sam
ple

 eB
oo

k c
on

ten
t

https://nodered.org/docs/getting-started/docker
https://nodered.org/docs/getting-started/docker

29

7. Node-RED dashboard
The Node-RED Dashboard is a powerful tool that enables the creation

of interactive graphical user interfaces for your Node-RED applications. It
provides a set of nodes that allow you to create live graphs, charts, gauges,
form inputs, and other UI components. This chapter provides an introduction
to the Node-RED Dashboard, its main features, and its use.

In the screenshot below, you can see a dashboard that contains a variety
of widgets from my course “Node-RED ESP32: Make a Terrarium Controller“.
In this example, you can see these types of widgets:

• Switch.
• Numeric.
• Gauge.
• Chart.
• Text.

Figure 1.7.not set.1: An example Node-RED dashboard

What is the Node-RED Dashboard?
The Node-RED Dashboard is an add-on module that provides a set of

nodes in Node-RED to create live dashboards. It's a visual tool for wiring the

Sam
ple

 eB
oo

k c
on

ten
t

30

Internet of Things (IoT), but it can also be used for other types of applications
to visualize data and interact with your Node-RED server.

The Node-RED Dashboard offers a range of UI components:

- Buttons: Buttons are simple UI elements that can send a message
when clicked.

- Sliders & Numeric Inputs: These allow users to input numeric values
in various ways.

- Text Input & Dropdown: Text input fields and dropdown selectors
provide more ways for users to interact with your flows.

- Charts & Gauges: These nodes allow you to display data in various
graphical formats.

- UI Control: This node can be used to dynamically control the layout
and content of the dashboard.

Setting up the Node-RED Dashboard
To start using the Node-RED Dashboard, you need to first install it. This

can be done directly from the Node-RED interface by navigating to 'Manage
palette' from the menu, then searching for `node-red-dashboard` in the 'Install'
tab.

Figure 1.7.not set.2: Install the Dashboard nodes.

After installation, a new set of nodes labeled 'dashboard' will be
available in the palette. You can start creating your dashboard by dragging
and dropping these nodes onto your flow. You can see some of the installed
Dashboard nodes in the screenshot below.

Sam
ple

 eB
oo

k c
on

ten
t

31

Figure 1.7.not set.3: Some of the installed Dashboard nodes.

Using the Node-RED Dashboard
Creating a dashboard involves creating a flow (or you can add a

dashboard in an existing flow), and adding input and/or output nodes that
interact with other dashboard nodes. Once you've created a flow with
dashboard nodes and deployed it, you can view your dashboard by
appending `/ui` to your Node-RED URL in your browser (e.g., `http://
localhost:1880/ui`). You can also click on the Dashboard button that you can
find in the Dashboard tab of the Information in the side bar (see below).

Figure 1.7.not set.4: You can open the. Dashboard from the Side bar.

Each dashboard node provides different configuration options, such as
the group and tab it belongs to, size and labels. Experimenting with these
options will help you create a unique and interactive dashboard. The
dashboard is designed to create a single-page application, which means all
interactions occur on a single web page.

The Node-RED Dashboard is a powerful tool for creating user interfaces
for your Node-RED applications. It provides an easy and intuitive way to
visualize data and interact with your flows. Whether you're building a home
automation system, a data monitoring application, or an IoT project, the
Node-RED Dashboard can be a valuable addition to your toolset.

Sam
ple

 eB
oo

k c
on

ten
t

32

7.1. Text input and output
One of the powerful features of Node-RED Dashboard is its ability to

provide user interface elements, or widgets, that interact with your flows. Two
of these widgets are the 'Text Input' and 'Text Output' nodes, which allow for
the entry and display of text within your dashboard, respectively. This
segment will give you an introduction to these nodes, detailing their
configuration and use.

Figure 1.7.1.5: The Text Input node in the palette.

Text Input Node
The 'Text Input' node provides an interface for users to enter data that

can be used within your flows. It can be used to receive simple text input, but
also supports more complex types such as a date picker or color picker.

To configure a 'Text Input' node:

1. Drag and drop a 'Text Input' node from the dashboard category in the
node palette to your workspace.

2. Double-click the node to open its configuration settings.

Sam
ple

 eB
oo

k c
on

ten
t

33

Figure 1.7.1.6: The Text Input node configuration options.

3. Set the 'Group' field to assign the node to a user interface group. You
can either select an existing group from the drop-down menu, or click on the
pen button to enter the Group dialogue box where you can create a new group
and assign the group (and all its members) to a dashboard tab. The Dashboard
may contain multiple tabs.

4. Under 'Mode', select the type of input you want (text, password,
email address, number, date, time, color, and many types of input text).

5. Optional fields such as 'Label' and 'Placeholder' can be filled to
provide additional information for the user interface.

6. Click 'Done' to save your settings.

The 'Text Input' node sends a message every time the user interacts with
the input field in the dashboard. The message's payload contains the user's
input.

Sam
ple

 eB
oo

k c
on

ten
t

34

Text Output Node
The 'Text Output' node provides a way to display text in the dashboard.

This text can be static, but more commonly, it is dynamically updated based
on the flow's operations.

Figure 1.7.1.7: The Text Output node in the Palette.

To configure a 'Text Output' node:

1. Drag and drop a 'Text Output' node from the dashboard category in
the node palette to your workspace.

2. Double-click the node to open its configuration settings.

Figure 1.7.1.8: The Text Output configuration options.

3. Set the 'Group' field to assign the node to a user interface group.

Sam
ple

 eB
oo

k c
on

ten
t

35

4. In the 'Value Format' field, enter a Mustache template (more about
Moustache in a moment) to format the displayed text. The default is
`{{msg.payload}}`, which will display the payload of the input message.

5. Optional settings like 'Label' and 'Name' can be used to provide
additional context in the dashboard.

6. Click 'Done' to save your settings.

The 'Text Output' node displays the input message's payload in the
dashboard, formatted according to the 'Value Format' field.

About Mustache
"Mustache" is a simple web template system. It's often referred to as a

"logic-less" system because it lacks the explicit control flow statements, like if
and else conditionals or for loops, found in other templating engines. Instead,
Mustache templates use tags, denoted by double curly braces (i.e., “{{“ and
“}}”), which get replaced with actual values at runtime.

The name "Mustache" comes from the heavy use of curly braces, which
resemble a mustache when seen from the side. Mustache can be used for
HTML, config files, source code - basically anything. It works by expanding
tags in a template using values provided in a hash or object.

In the context of Node-RED dashboards, a Mustache template is often
used to dynamically generate the HTML content displayed on the dashboard.

Here's an example of how you might use a Mustache template in Node-
RED. Let's say you have a data object like this:

javascript
{
 "name": "John",
 "age": 30
}

You could create a Mustache template in Node-RED that looks like this:

<p>Hello, {{name}}. You are {{age}} years old.</p>

When the data object is passed into the Mustache template, it will
replace the {{name}} and {{age}} tags with the corresponding values from the
data object, resulting in the following HTML:

Sam
ple

 eB
oo

k c
on

ten
t

36

<p>Hello, John. You are 30 years old.</p>

This resulting HTML can then be displayed on your Node-RED
dashboard.

In a more complex scenario, you might have an array of objects, and
you could use Mustache to iterate over them and generate HTML for each
one. For instance, consider the following data:

{
 "people": [
 {"name": "John", "age": 30},
 {"name": "Jane", "age": 28}
]
}

You could use the following Mustache template to generate HTML for
each person:

 {{#people}}
 {{name}} is {{age}} years old.
 {{/people}}

This would result in the following HTML:

 John is 30 years old.
 Jane is 28 years old.

Node-RED uses Mustache syntax in the template node to access the
properties of the incoming message object (msg.payload, msg.topic, etc.) as
well. It is a vital component of the Node-RED ecosystem. You can learn more
about the Mustache templating system on its website: https://
mustache.github.io.

Using Text Input and Output Nodes Together

Sam
ple

 eB
oo

k c
on

ten
t

https://mustache.github.io
https://mustache.github.io

37

A simple use case for the 'Text Input' and 'Text Output' nodes is to
create a flow where the user enters text, some processing occurs, and the
result is displayed.

1. Connect a 'Text Input' node to a function node that modifies the input
in some way.

2. Connect the function node to a 'Text Output' node.
3. Deploy the flow.

Now, when a user enters text into the 'Text Input' field in the dashboard,
the text will be processed by the function node and the result displayed in the
'Text Output' field.

In summary, the 'Text Input' and 'Text Output' nodes in the Node-RED
Dashboard provide powerful and flexible ways to interact with your flows.
Understanding and using these tools effectively can greatly enhance your
Node-RED applications.

Example
Let's create a simple flow where we'll take text input from the user,

process it, and display it in the dashboard as well as debug it.

1. Setup the Dashboard. Open the Dashboard properties tab from the
right side of the editor. You want to create a new tab, and add a widget group
to the tab. Click “+tab” to add a tab, and then “+group” to add a group.

Figure 1.7.1.9: Create a new Dashboard tab.

2. Text Input Node: First, drag and drop a 'Text Input' node onto your
workspace. Double-click on the node to open its configuration settings. Set the
'Group' field to assign the node to a user interface group. Under 'Mode', select
'text input'. Leave other settings as default and click 'Done'. Setup the
properties like in this example, including the Group (set to Group 1):

Sam
ple

 eB
oo

k c
on

ten
t

38

Figure 1.7.1.10: Create a new Dashboard tab.

3. Function Node: Drag and drop a 'Function' node onto your
workspace. Double-click on it to open its configuration settings. In the
'Function' field, write a simple function to process the input. For example, let's
add a prefix to the input text:

msg.payload = "User said: " + msg.payload;
return msg;

 Click 'Done'.

4. Text Output Node: Next, drag and drop a 'Text Output' node onto
your workspace. Double-click on it to open its configuration settings. Set the
'Group' field to the same group as your 'Text Input' node. Leave the 'Value
Format' field as default (`{{msg.payload}}`) and click 'Done'. Set up this widget
like this, including the Group:

Sam
ple

 eB
oo

k c
on

ten
t

39

Figure 1.7.1.11: Setup the Text Output node.

5. Debug Node: Drag and drop a 'Debug' node onto your workspace.
No configuration is needed for this node.

6. Now, connect the output port of the 'Text Input' node to the input
port of the 'Function' node. Then connect the output port of the 'Function'
node to the input ports of both the 'Text Output' and 'Debug' nodes.

7. In Dashboard layout, arrange the two dashboards like this:

Figure 1.7.1.12: Open the dashboard.

8. Next, click 'Deploy' to deploy the flow.
10. Click on the Open Dashboard button to open the Dashboard in a

new browser window.

With this flow, when a user enters text into the 'Text Input' field in the
dashboard, the text will be processed by the function node and the result
displayed in the 'Text Output' field. The processed text will also be output to
the debug tab. Here is a screenshot of this dashboard in the browser:

Sam
ple

 eB
oo

k c
on

ten
t

40

Figure 1.7.1.13: The dashboard we just created in the browser.

It is possible to define the exact location and size of each browser in the
dashboard by using the Size attribute in the dashboard node’s properties
window. For example, I have set the text output widget to occupy and area of
six cells width and one cell height by defining this area in the Size field:

Figure 1.7.1.14: Define the size of the text widget.

You can further control the ordering of the widgets in the dashboard via
the Tabs & Links box in the Layout tab of the Dashboard tab in the side bar.
Use the handles in the left of each widgets to rearrange them:

Figure 1.7.1.15: You can re-arrange the order of Dashboard widgets.

7.2. The button
Button widgets are one of the most straightforward yet powerful tools

in the Node-RED Dashboard. They allow users to interact with a flow clearly
and intuitively. This section will introduce the button widget, including its
configuration and use.

Sam
ple

 eB
oo

k c
on

ten
t

41

Figure 1.7.2.16: The Button node in the palette.

What is a Button Widget?
A button widget in Node-RED is a user interface element that sends a

predefined message each time it is clicked or tapped. This makes it an
excellent tool for triggering actions in your flow based on user interaction.

Setting Up a Button Widget
To use a button widget in Node-RED:

1. Drag and drop a "Button" node from the dashboard category in the
node palette onto your workspace.

2. Double-click the node to open its configuration settings.

Sam
ple

 eB
oo

k c
on

ten
t

42

Figure 1.7.2.17: The Button node configuration options.

3. Set the "Group" field to assign the node to a user interface group.
4. In the "Label" field, provide a name for the button displayed on the

dashboard.
5. In the "Payload" field, enter the message you want the button to send

each time it is clicked. This can be a static value or a JavaScript expression that
generates a dynamic value.

6. Set the "Payload Type" to the type of the payload value. This is
usually "string" or "number" for static values. For JavaScript expressions, this
should be set to "expression".

7. In the "Name" field, enter a name for the node. This name will be
displayed in the workspace but not on the dashboard.

8. Click "Done" to save your settings.

Using a Button Widget
Once you’ve configured your button widget and deployed your flow,

you can interact with it on your dashboard. Each time you click the button, it

Sam
ple

 eB
oo

k c
on

ten
t

43

will send a message with its configured payload. You can use the button
widget to trigger any action in your flow. This could be turning on a light,
starting a timer, sending a request to a web server, or any other action that can
be triggered by a message.

For example, suppose you want to create a flow that turns on a lamp
when a button is clicked. You could configure a button node with a payload of
"on", connect it to a function node that translates "on" to the appropriate
command for your light, and then connect that to an output node that sends
the command to your lamp.

Button widget demonstration
Let’s create a simple flow using a button widget to trigger an action. In

this case, we’ll trigger the injection of a timestamp.

1. Drag and drop a "Button" node onto your workspace from the
dashboard section—Double-click on it to open its configuration settings.
Set the "Group" field to assign the node to a user interface group. In the
"Label" field, provide a name for the button, say "Inject Timestamp". In
the "Payload" field, set it to "String" and leave the value empty. You can
experiment with other payload types, including the timestamp (use a
debug node to see the value). Click "Done".

Sam
ple

 eB
oo

k c
on

ten
t

44

Figure 1.7.2.18: The example button node properties.

2. Drag and drop a "Function" node onto your workspace. Double-click on
it to open its configuration settings. In the "Function" field, write a
simple function to generate the current timestamp:

msg.payload = new Date().getTime();
return msg;

1. Click "Done".
2. Drag and drop a "Debug" node onto your workspace. No configuration

is needed for this node.
3. Connect the output port of the "Button" node to the input port of the

"Function" node. Then connect the output port of the "Function" node to
the input port of the "Debug" node.

Sam
ple

 eB
oo

k c
on

ten
t

45

4. Drag a text output widget and give it a suitable name, like “Button
triggered timestamp”. Add it to the button group.

Figure 1.7.2.19: The button widget example flow.

5. Use the Dashboard layout editor to arrange the widgets. You can
include a spacer to add a gap between the widgets.

Figure 1.7.2.20: The button widget example dashboard layout.

6. Click "Deploy" to deploy the flow.

With this flow, when a user clicks the "Inject Timestamp" button in the
dashboard, the current timestamp will be generated by the function node and
output to the debug tab. You can see the dashboard for this flow below:

Figure 1.7.2.21: The button widget example dashboard in the browser.

Sam
ple

 eB
oo

k c
on

ten
t

46

7.3. The gauge and slider
The Node-RED Dashboard provides a set of nodes that make it easy to

create interactive user interfaces. Among them, the Gauge and Slider widgets
are versatile tools that display and control real-time data. This segment will
introduce these widgets, including their configuration and usage.

The Gauge widget
The Gauge widget provides a graphical representation of data, perfect

for real-time sensor data or system status monitoring.

Figure 1.7.3.22: The Gauge node in the palette.

Setting Up a Gauge Widget
Here is how to set up a gauge widget in your Node-RED dashboard.

1. Drop a 'Gauge' node from the Dashboard category in the Palette onto
your workspace.

2. Double-click the node to open its configuration settings.

Sam
ple

 eB
oo

k c
on

ten
t

47

Figure 1.7.3.23: The Gauge widget configuration options.

3. Set the 'Group' field to assign the node to a user interface group.
4. In the 'Label' field, provide a name for the gauge displayed on the

dashboard.
5. Set the minimum and maximum values that the gauge will represent.
6. Choose a type for the gauge (Gauge, Donut, Compass, or Wave).
7. Click 'Done' to save your settings.

Using a Gauge Widget
The Gauge widget will display the value of the payload property of any

message it receives. For example, if you have a flow that reads the
temperature from a sensor and sends it as the payload of a message,
connecting this flow to a gauge will display the temperature on your
dashboard.

Sam
ple

 eB
oo

k c
on

ten
t

48

The Slider Widget

The Slider widget allows users to input a numeric value by dragging a
handle along a track. It's ideal for controlling devices that accept a range of
numeric values, like dimming a lamp or setting a temperature.

Figure 1.7.3.24: The Gauge node in the palette.

Setting Up a Slider Widget
Here is how to set up a gauge widget in your Node-RED dashboard.

1. Drag and drop a 'Slider' node from the Dashboard category onto your
workspace.

2. Double-click the node to open its configuration settings.

Sam
ple

 eB
oo

k c
on

ten
t

49

Figure 1.7.3.25: The Slider widget configuration options.

3. Set the 'Group' field to assign the node to a user interface group.
4. In the 'Label' field, provide a name for the slider displayed on the

dashboard.
5. Set the minimum and maximum values that the slider will represent.
6. Click 'Done' to save your settings.

Using a Slider Widget
The Slider widget will send a message with the current slider value as

the payload each time the slider handle is moved. This makes it easy to
incorporate the slider into your flows. For example, you could connect a slider
to a function node that translates the slider value into a command for a device,
like setting the brightness of a light or the temperature of a thermostat.

The Gauge and Slider widgets in the Node-RED Dashboard provide an
easy way to interact with your flows. The Gauge widget lets you visualise

Sam
ple

 eB
oo

k c
on

ten
t

50

data in real time, while the Slider widget allows for interactive control of
devices. Together, they can enhance your IoT projects and provide users with
a rich, interactive experience.

A demo of the gauge and slider widgets
Let's create a simple flow that utilises a slider to control a value and a

gauge to display that value.

1. Slider Node: Drag and drop a 'Slider' node from the dashboard
section onto your workspace. Double-click the node to open its configuration
settings. Set the 'Group' field to assign the node to a user interface group. In
the 'Label' field, provide a name for the slider, say "Control". Set the minimum
and maximum values per your requirement, say 0 to 100. Click 'Done'.

2. Gauge Node: Drag and drop a 'Gauge' node onto your workspace—
Double-click on it to open its configuration settings. Set the 'Group' field to
assign the node to the same user interface group. In the 'Label' field, provide a
name for the gauge, say "Display". Set the minimum and maximum values the
same as the slider (0 to 100 in this case). Click 'Done'.

3. Connect the output port of the 'Slider' node to the input port of the
'Gauge' node. Click 'Deploy' to deploy the flow.

Figure 1.7.3.26: An example flow that combines Gauge and Slider widgets.

With this flow, when a user moves the slider in the dashboard, the
gauge will display the slider’s current value. It looks like this:

Sam
ple

 eB
oo

k c
on

ten
t

51

Figure 1.7.3.27: A dashboard that contains a gauge and a slider.

This simple example can be extended to control and monitor devices or
systems. For instance, the slider could be used to manage the brightness of a
light, with the gauge displaying the current brightness level.

7.4. The switch
The Node-RED Dashboard provides a set of nodes that make it easy to

create interactive user interfaces. Among these, the Switch widget is useful for
controlling binary states, acting much like a physical switch. This segment
will introduce the Switch widget, including its configuration and usage.

The Switch widget in Node-RED is a user interface element that
displays a switch on the dashboard. The user can toggle the switch on and off,
enabling it to control binary states in your flows. For example, it could turn a
light on and off or activate and deactivate a system or process.

Figure 1.7.4.28: The Switch node in the palette.

Setting Up a Switch Widget
To use a Switch widget in Node-RED:

Sam
ple

 eB
oo

k c
on

ten
t

52

1. Drag and drop a 'Switch' node from the dashboard category in the
node palette onto your workspace.

2. Double-click the node to open its configuration settings.

Figure 1.7.4.29: The Switch widget configuration options.

3. Set the 'Group' field to assign the node to a user interface group.
4. In the 'Label' field, provide a name for the switch displayed on the

dashboard.
5. In the 'Payload' fields for 'On' and 'Off', enter the messages you want

the switch to send when turned on and off, respectively. These messages can
be static values or dynamic expressions.

6. Set the 'Payload Type' fields for 'On' and 'Off' to match the type of
your payload values.

7. In the 'Name' field, enter a name for the node. This name will be
displayed in the workspace but not on the dashboard.

8. Click 'Done' to save your settings.

Sam
ple

 eB
oo

k c
on

ten
t

53

Using a Switch Widget
Once you've configured your Switch widget and deployed your flow,

you can interact with it on your dashboard. When you toggle the switch on, it
will send its 'On' payload, and when you toggle it off, it will send its 'Off'
payload.

You can use these payloads to control any binary state in your flow. For
example, you could connect the switch to an output node that controls a lamp.
When the switch sends its 'On' payload, the light turns on, and when it sends
its 'Off' payload, the light turns off.

The Switch widget in the Node-RED Dashboard is a powerful tool for
interacting with binary states in your flows. By configuring a switch with
appropriate 'On' and 'Off' payloads, you can give users control over these
states straightforwardly and intuitively. Whether you're creating a home
automation system, a control panel for a machine, or any other project that
requires binary control, the Switch widget can be an invaluable tool.

An example flow with the switch widget
Here's an example flow using the switch widget, inject, debug, and

function nodes.

1. Switch Node: Drag and drop a 'Switch' node from the Dashboard
category onto your workspace. Double-click the node to open its
configuration settings. Set the 'Group' field to assign the node to a user
interface group. In the 'Label' field, provide a name for the switch displayed
on the dashboard, say "Light Control". Set the “On Payload” to "true" and “Off
Payload” to "false". Click “Done”.

2. Function Node: Drag and drop a 'Function' node onto your
workspace. In this function, we'll interpret the boolean payload from the
switch node and turn it into a string representing the light's state. Double-click
the node to open its configuration settings. You might write a function like
this:

if (msg.payload === true) {
msg.payload = "The light is ON";

} else if (msg.payload === false) {
msg.payload = "The light is OFF";

}

Sam
ple

 eB
oo

k c
on

ten
t

54

return msg;

Click 'Done'.

3. Debug Node: Drag and drop a “Debug” node onto your workspace.
This will allow you to view the output of the function node in the debug
sidebar.

4. Add a text output widget to see the switch value in the dashboard.
4. Now connect the output of the “Switch” node to the input of the

“Function” node and the output of the 'Function' node to the input of the
'Debug' node.

5. Click 'Deploy' to deploy the flow. You can see the flow for this
example below.

Figure 1.7.4.30: The Switch widget example flow.

You’ll see a switch labelled “Light Control” when you go to your Node-
RED dashboard. You can see the dashboard below.

Figure 1.7.4.31: The Switch widget example dashboard.

Toggling this switch will send a message with a payload of "true" or
"false" to the function node. The function node will translate this into "The
light is ON" or "The light is OFF" and send this message to the debug node.
The debug node will then print this message to the debug sidebar.

Sam
ple

 eB
oo

k c
on

ten
t

	Part 1: Node-RED novice to hero
	What is Node-RED?
	Node-RED in IoT and event-driven systems
	Communication in Node-RED: Protocols and Methods
	Node-RED installation options
	Node-RED dashboard
	Text input and output
	The button
	The gauge and slider
	The switch

